A weak discrete maximum principle and stability of the finite element method in $L_{\infty }$ on plane polygonal domains. I
HTML articles powered by AMS MathViewer
- by Alfred H. Schatz PDF
- Math. Comp. 34 (1980), 77-91 Request permission
Abstract:
Let $\Omega$ be a polygonal domain in the plane and $S_r^h(\Omega )$ denote the finite element space of continuous piecewise polynomials of degree $\leqslant r - 1\;(r \geqslant 2)$ defined on a quasi-uniform triangulation of $\Omega$ (with triangles roughly of size h). It is shown that if ${u_h} \in S_r^h(\Omega )$ is a "discrete harmonic function" then an a priori estimate (a weak maximum principle) of the form \[ {\left \| {{u_h}} \right \|_{{L_\infty }(\Omega )}} \leqslant C{\left \| {{u_h}} \right \|_{{L_\infty }(\partial \Omega )}}\] holds. Now let u be a continuous function on $\bar \Omega$ and ${u_h}$ be the usual finite element projection of u into $S_r^h(\Omega )$ (with ${u_h}$ interpolating u at the boundary nodes). It is shown that for any $\chi \in S_r^h(\Omega )$ \[ {\left \| {u - {u_h}} \right \|_{{L_\infty }(\Omega )}} \leqslant c{\left ( {\ln \frac {1}{h}} \right )^{\bar r}}{\left \| {u - \chi } \right \|_{{L_\infty }(\Omega )}},\quad {\text {where}}\;\bar r = \left \{ {\begin {array}{*{20}{c}} 1 & {{\text {if}}\;r = 2,} \\ 0 & {{\text {if}}\;r \geqslant 3.} \\ \end {array} } \right .\] This says that (modulo a logarithm for $r = 2$) the finite element method is bounded in ${L_\infty }$ on plane polygonal domains.References
- P. G. Ciarlet and P.-A. Raviart, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg. 2 (1973), 17–31. MR 375802, DOI 10.1016/0045-7825(73)90019-4
- Pierre Grisvard, Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain, Numerical solution of partial differential equations, III (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md., 1975) Academic Press, New York, 1976, pp. 207–274. MR 0466912
- Olga A. Ladyzhenskaya and Nina N. Ural’tseva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968. Translated from the Russian by Scripta Technica, Inc; Translation editor: Leon Ehrenpreis. MR 0244627 H. D. MITTELMAN, "On a discrete maximum principle in the finite element method." (Preprint.)
- Frank Natterer, Über die punktweise Konvergenz finiter Elemente, Numer. Math. 25 (1975/76), no. 1, 67–77 (German, with English summary). MR 474884, DOI 10.1007/BF01419529
- J. A. Nitsche, $L_{\infty }$-convergence of finite element approximation, Journées “Éléments Finis” (Rennes, 1975) Univ. Rennes, Rennes, 1975, pp. 18. MR 568857 J. A. NITSCHE, ${L_\infty }$ Convergence of Finite Element Approximations, Proc. Sympos. on Mathematical Aspects of Finite Element Methods, Rome, 1975.
- Joachim A. Nitsche and Alfred H. Schatz, Interior estimates for Ritz-Galerkin methods, Math. Comp. 28 (1974), 937–958. MR 373325, DOI 10.1090/S0025-5718-1974-0373325-9
- A. H. Schatz and L. B. Wahlbin, Interior maximum norm estimates for finite element methods, Math. Comp. 31 (1977), no. 138, 414–442. MR 431753, DOI 10.1090/S0025-5718-1977-0431753-X
- A. H. Schatz and L. B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains. I, Math. Comp. 32 (1978), no. 141, 73–109. MR 502065, DOI 10.1090/S0025-5718-1978-0502065-1
- A. H. Schatz and L. B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains. I, Math. Comp. 32 (1978), no. 141, 73–109. MR 502065, DOI 10.1090/S0025-5718-1978-0502065-1
- Ridgway Scott, Optimal $L^{\infty }$ estimates for the finite element method on irregular meshes, Math. Comp. 30 (1976), no. 136, 681–697. MR 436617, DOI 10.1090/S0025-5718-1976-0436617-2
- Gilbert Strang and George J. Fix, An analysis of the finite element method, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973. MR 0443377
Additional Information
- © Copyright 1980 American Mathematical Society
- Journal: Math. Comp. 34 (1980), 77-91
- MSC: Primary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1980-0551291-3
- MathSciNet review: 551291