On maximal finite irreducible subgroups of $\textrm {GL}(n, \textbf {Z})$. III. The nine-dimensional case
HTML articles powered by AMS MathViewer
- by Wilhelm Plesken and Michael Pohst PDF
- Math. Comp. 34 (1980), 245-258 Request permission
Abstract:
All maximal finite absolutely irreducible subgroups of $GL(9,{\mathbf {Z}})$ are determined up to conjugacy in $GL(9,{\mathbf {Z}})$.References
-
H. F. BLICHFELDT, Finite Collineation Groups, Univ. of Chicago Press, Chicago, 1917.
- E. C. Dade, Integral systems of imprimitivity, Math. Ann. 154 (1964), 383β386. MR 161919, DOI 10.1007/BF01362571
- Walter Feit, On finite linear groups in dimension at most 10, Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975) Academic Press, New York, 1976, pp.Β 397β407. MR 0412294
- W. C. Huffman and D. B. Wales, Linear groups of degree nine with no elements of order seven, J. Algebra 51 (1978), no.Β 1, 149β163. MR 487471, DOI 10.1016/0021-8693(78)90141-2
- Adalbert Kerber, Representations of permutation groups. I, Lecture Notes in Mathematics, Vol. 240, Springer-Verlag, Berlin-New York, 1971. MR 0325752, DOI 10.1007/BFb0067943 W. PLESKEN, BeitrΓ€ge zur Bestimmung der endlichen irreduziblen Untergruppen von $GL(n,{\mathbf {Z}})$ und ihrer ganzzahligen Darstellungen, Dissertation, Aachen, 1974.
- Wilhelm Plesken and Michael Pohst, On maximal finite irreducible subgroups of $\textrm {GL}(n, \textbf {Z})$. I. The five and seven dimensional cases, Math. Comp. 31 (1977), no.Β 138, 536β551. MR 444789, DOI 10.1090/S0025-5718-1977-0444789-X
- Wilhelm Plesken and Michael Pohst, On maximal finite irreducible subgroups of $\textrm {GL}(n, \textbf {Z})$. I. The five and seven dimensional cases, Math. Comp. 31 (1977), no.Β 138, 536β551. MR 444789, DOI 10.1090/S0025-5718-1977-0444789-X
- Charles C. Sims, Computational methods in the study of permutation groups, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp.Β 169β183. MR 0257203
Additional Information
- © Copyright 1980 American Mathematical Society
- Journal: Math. Comp. 34 (1980), 245-258
- MSC: Primary 20C10
- DOI: https://doi.org/10.1090/S0025-5718-1980-0551303-7
- MathSciNet review: 551303