Some new algorithms for high-precision computation of Euler's constant

Authors:
Richard P. Brent and Edwin M. McMillan

Journal:
Math. Comp. **34** (1980), 305-312

MSC:
Primary 10-04; Secondary 10A40, 68C05

DOI:
https://doi.org/10.1090/S0025-5718-1980-0551307-4

MathSciNet review:
551307

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe several new algorithms for the high-precision computation of Euler's constant Using one of the algorithms, which is based on an identity involving Bessel functions, has been computed to 30,100 decimal places. By computing their regular continued fractions we show that, if or is of the form for integers *P* and *Q*, then .

**[1]**Milton Abramowitz and Irene A. Stegun,*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR**0167642****[2]**M. BEELER, R. W. GOSPER & R. SCHROEPPEL, "Hakmem," Memo No. 239, M.I.T. Artificial Intelligence Lab., Cambridge, Mass., 1972, pp. 70-71.**[3]**W. A. Beyer and M. S. Waterman,*Error analysis of a computation of Euler’s constant*, Math. Comp.**28**(1974), 599–604. MR**341809**, https://doi.org/10.1090/S0025-5718-1974-0341809-5**[4]**W. A. Beyer and M. S. Waterman,*Error analysis of a computation of Euler’s constant*, Math. Comp.**28**(1974), 599–604. MR**341809**, https://doi.org/10.1090/S0025-5718-1974-0341809-5**[5]**R. P. BRENT, "The complexity of multiple-precision arithmetic,"*Complexity of Computational Problem Solving*(R. S. Anderssen and R. P. Brent, Eds.), Univ. of Queensland Press, Brisbane, 1976, pp. 126-165.**[6]**Richard P. Brent,*Multiple-precision zero-finding methods and the complexity of elementary function evaluation*, Analytic computational complexity (Proc. Sympos., Carnegie-Mellon Univ., Pittsburgh, Pa., 1975) Academic Press, New York, 1976, pp. 151–176. MR**0423869****[7]**Richard P. Brent,*Computation of the regular continued fraction for Euler’s constant*, Math. Comp.**31**(1977), no. 139, 771–777. MR**436547**, https://doi.org/10.1090/S0025-5718-1977-0436547-7**[8]**R. P. BRENT, " and to 20700D and their regular continued fractions to 20000 partial quotients," UMT 1,*Math. Comp.*, v. 32, 1978, p. 311.**[9]**R. P. BRENT, "A Fortran multiple-precision arithmetic package,"*ACM Trans. Math. Software*, v. 4, 1978, pp. 57-70.**[10]**R. P. BRENT, "Euler's constant and its exponential to 30,100 decimals," Computing Research Group, Australian National University, Sept. 1978. Submitted to*Math. Comp.*UMT file.**[11]**R. P. BRENT & E. M. McMILLAN, "The first 29,000 partial quotients in the regular continued fractions for Euler's constant and its exponential," submitted to*Math. Comp.*UMT file.**[12]**J. W. L. GLAISHER, "History of Euler's constant,"*Messenger of Math.*, v. 1, 1872, pp. 25-30.**[13]**A. Ya. Khintchine,*Continued fractions*, Translated by Peter Wynn, P. Noordhoff, Ltd., Groningen, 1963. MR**0161834****[14]**G. F. B. RIEMANN, "Zur Theorie der Nobili'schen Farbenringe,"*Poggendorff's Annalen der Physik und Chemie*, Bd. 95, 1855, pp. 130-139. (Reprinted in*Bernhard Riemann's Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass*, Teubner, Leipzig, 1876, pp. 54-61.)**[15]**A. Schönhage and V. Strassen,*Schnelle Multiplikation grosser Zahlen*, Computing (Arch. Elektron. Rechnen)**7**(1971), 281–292 (German, with English summary). MR**292344**, https://doi.org/10.1007/bf02242355**[16]**Dura W. Sweeney,*On the computation of Euler’s constant*, Math. Comp.**17**(1963), 170–178. MR**160308**, https://doi.org/10.1090/S0025-5718-1963-0160308-X**[17]**A. VAN DER POORTEN, "A proof that Euler missed-Apéry's proof of the irrationality of ,"*Mathematical Intelligence*, v. 1, 1979, pp. 196-203.**[18]**H. S. Wall,*Analytic Theory of Continued Fractions*, D. Van Nostrand Company, Inc., New York, N. Y., 1948. MR**0025596****[19]**G. N. Watson,*A Treatise on the Theory of Bessel Functions*, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR**0010746**

Retrieve articles in *Mathematics of Computation*
with MSC:
10-04,
10A40,
68C05

Retrieve articles in all journals with MSC: 10-04, 10A40, 68C05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1980-0551307-4

Keywords:
Euler's constant,
Mascheroni's constant,
gamma,
Bessel functions,
rational approximation,
regular continued fractions,
multiple-precision arithmetic,
Gauss-Kusmin law

Article copyright:
© Copyright 1980
American Mathematical Society