On the $L^{\infty }$-convergence of Galerkin approximations for second-order hyperbolic equations
HTML articles powered by AMS MathViewer
- by Garth A. Baker and Vassilios A. Dougalis PDF
- Math. Comp. 34 (1980), 401-424 Request permission
Abstract:
It is shown that certain classes of high order accurate Galerkin approximations for homogeneous second-order hyperbolic equations, known to possess optimal order rate of convergence in ${L^2}$, also possess optimal order rate of convergence in ${L^\infty }$. This is attainable with particular smoothness assumptions on the initial data. We establish sufficient conditions for optimal ${L^\infty }$-convergence of the approximations to the solution and also the approximation to its time derivative. This is done for both semidiscrete approximations and for single-step fully discrete approximations generated by rational functions.References
- Garth A. Baker, Error estimates for finite element methods for second order hyperbolic equations, SIAM J. Numer. Anal. 13 (1976), no. 4, 564–576. MR 423836, DOI 10.1137/0713048
- Garth A. Baker and James H. Bramble, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations, RAIRO Anal. Numér. 13 (1979), no. 2, 75–100 (English, with French summary). MR 533876, DOI 10.1051/m2an/1979130200751
- Garth A. Baker, James H. Bramble, and Vidar Thomée, Single step Galerkin approximations for parabolic problems, Math. Comp. 31 (1977), no. 140, 818–847. MR 448947, DOI 10.1090/S0025-5718-1977-0448947-X
- J. H. Bramble, A. H. Schatz, V. Thomée, and L. B. Wahlbin, Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations, SIAM J. Numer. Anal. 14 (1977), no. 2, 218–241. MR 448926, DOI 10.1137/0714015
- Felix E. Browder, Asymptotic distribution of eigenvalues and eigenfunctions for non-local elliptic boundary value problems. I, Amer. J. Math. 87 (1965), 175–195. MR 174858, DOI 10.2307/2373230
- Colin Clark, The asymptotic distribution of eigenvalues and eigenfunctions for elliptic boundary value problems, SIAM Rev. 9 (1967), 627–646. MR 510064, DOI 10.1137/1009105 M. CROUZEIX, Sur l’Approximation des Equations Différentielles Opérationelles Linéaires par des Méthodes de Runge-Kutta, Thèse, Université Paris-VI, Paris, 1975.
- Todd Dupont, $L^{2}$-estimates for Galerkin methods for second order hyperbolic equations, SIAM J. Numer. Anal. 10 (1973), 880–889. MR 349045, DOI 10.1137/0710073
- Jens Frehse and Rolf Rannacher, Asymptotic $L^{\infty }$-error estimates for linear finite element approximations of quasilinear boundary value problems, SIAM J. Numer. Anal. 15 (1978), no. 2, 418–431. MR 502037, DOI 10.1137/0715026
- Frank Natterer, Über die punktweise Konvergenz finiter Elemente, Numer. Math. 25 (1975/76), no. 1, 67–77 (German, with English summary). MR 474884, DOI 10.1007/BF01419529 J. A. NITSCHE, ${L^\infty }$-Convergence for Finite Element Approximation, 2nd Conf. on Finite Elements, Rennes, France, May 12-14, 1975.
- J. A. Nitsche, On $L_{\infty }$-convergence of finite element approximations to the solution of a nonlinear boundary value problem, Topics in numerical analysis, III (Proc. Roy. Irish Acad. Conf., Trinity Coll., Dublin, 1976) Academic Press, London-New York, 1977, pp. 317–325. MR 513215
- Rolf Rannacher, Zur $L^{\infty }$-Konvergenz linearer finiter Elemente beim Dirichlet-Problem, Math. Z. 149 (1976), no. 1, 69–77 (German). MR 488859, DOI 10.1007/BF01301633
- Ridgway Scott, Optimal $L^{\infty }$ estimates for the finite element method on irregular meshes, Math. Comp. 30 (1976), no. 136, 681–697. MR 436617, DOI 10.1090/S0025-5718-1976-0436617-2
- Lars Wahlbin, On maximum norm error estimates for Galerkin approximations to one-dimensional second order parabolic boundary value problems, SIAM J. Numer. Anal. 12 (1975), 177–182. MR 383785, DOI 10.1137/0712016
- Mary Fanett Wheeler, $L_{\infty }$ estimates of optimal orders for Galerkin methods for one-dimensional second order parabolic and hyperbolic equations, SIAM J. Numer. Anal. 10 (1973), 908–913. MR 343658, DOI 10.1137/0710076
Additional Information
- © Copyright 1980 American Mathematical Society
- Journal: Math. Comp. 34 (1980), 401-424
- MSC: Primary 65M15; Secondary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1980-0559193-3
- MathSciNet review: 559193