Convergence of multigrid iterations applied to difference equations
HTML articles powered by AMS MathViewer
 by Wolfgang Hackbusch PDF
 Math. Comp. 34 (1980), 425440 Request permission
Abstract:
Convergence proofs for the multigrid iteration are known for the case of finite element equations and for the case of some difference schemes discretizing boundary value problems in a rectangular region. In the present paper we give criteria of convergence that apply to general difference schemes for boundary value problems in Lipschitzian regions. Furthermore, convergence is proved for the multigrid algorithm with GaussSeidel’s iteration as smoothing procedure.References

G. P. ASTRACHANCEV, “An iterative method of solving elliptic net problems,” Ž. Vyčisl. Mat. i Mat. Fiz., v. 11, 1971, pp. 439448.
N. S. BACHVALOV, “On the convergence of a relaxation method with natural constraints on the elliptic operator,” Ž. Vyčisl. Mat. i Mat. Fiz., v. 6, 1966, pp. 861885.
 Achi Brandt, Multilevel adaptive solutions to boundaryvalue problems, Math. Comp. 31 (1977), no. 138, 333–390. MR 431719, DOI 10.1090/S0025571819770431719X
 R. P. Fedorenko, On the speed of convergence of an iteration process, Ž. Vyčisl. Mat i Mat. Fiz. 4 (1964), 559–564 (Russian). MR 182163 W. HACKBUSCH, “On the multigrid method applied to difference equations,” Computing, v. 20, 1978, pp. 291306. W. HACKBUSCH, “On the convergence of multigrid iterations,” Beiträge Numer. Math., v. 9. (To appear.)
 Wolfgang Hackbusch, On the regularity of difference schemes, Ark. Mat. 19 (1981), no. 1, 71–95. MR 625538, DOI 10.1007/BF02384470
 Theodor Meis and Ulrich Marcowitz, Numerische Behandlung partieller Differentialgleichungen, Hochschultext [University Textbooks], SpringerVerlag, BerlinNew York, 1978 (German). MR 513829, DOI 10.1007/9783642670305
 R. A. Nicolaides, On the $l^{2}$ convergence of an algorithm for solving finite element equations, Math. Comp. 31 (1977), no. 140, 892–906. MR 488722, DOI 10.1090/S00255718197704887223
 Richard S. Varga, Matrix iterative analysis, PrenticeHall, Inc., Englewood Cliffs, N.J., 1962. MR 0158502 P. WESSELING, A Convergence Proof for a Multiple Grid Method, Delft University of Technology, Report NA21, 1978.
 Wolfgang Hackbusch, Bemerkungen zur iterierten Defektkorrektur und zu ihrer Kombination mit Mehrgitterverfahren, Rev. Roumaine Math. Pures Appl. 26 (1981), no. 10, 1319–1329 (German). MR 646400
Additional Information
 © Copyright 1980 American Mathematical Society
 Journal: Math. Comp. 34 (1980), 425440
 MSC: Primary 65N20; Secondary 65F10
 DOI: https://doi.org/10.1090/S00255718198005591945
 MathSciNet review: 559194