An incomplete factorization technique for positive definite linear systems

Author:
T. A. Manteuffel

Journal:
Math. Comp. **34** (1980), 473-497

MSC:
Primary 65F10; Secondary 15A06

DOI:
https://doi.org/10.1090/S0025-5718-1980-0559197-0

MathSciNet review:
559197

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper describes a technique for solving the large sparse symmetric linear systems that arise from the application of finite element methods. The technique combines an incomplete factorization method called the shifted incomplete Cholesky factorization with the method of generalized conjugate gradients. The shifted incomplete Cholesky factorization produces a splitting of the matrix *A* that is dependent upon a parameter . It is shown that if *A* is positive definite, then there is some for which this splitting is possible and that this splitting is at least as good as the Jacobi splitting. The method is shown to be more efficient on a set of test problems than either direct methods or explicit iteration schemes.

**[1]**O. AXELSSON,*On Preconditioning and Convergence Acceleration in Sparse Matrix Problems*, Report CERN 74-10 of the CERN European Organization for Nuclear Research, Data Handling Division, Laboratory I, 8 May, 1974.**[2]**P. CONCUS, G. H. GOLUB & D. P. O'LEARY,*A Generalized Conjugate Gradient Method for the Numerical Solution of Elliptic Partial Differential Equations*, Lawrence Berkeley Laboratory Publ. LBL-4604, Berkeley, Calif., 1975.**[3]**James W. Daniel,*The conjugate gradient method for linear and nonlinear operator equations*, SIAM J. Numer. Anal.**4**(1967), 10–26. MR**217987**, https://doi.org/10.1137/0704002**[4]**M. Engeli, Th. Ginsburg, H. Rutishauser, and E. Stiefel,*Refined iterative methods for computation of the solution and the eigenvalues of self-adjoint boundary value problems*, Mitt. Inst. Angew. Math. Zürich. No.**8**(1959), 107. MR**0145689****[5]**D. K. Faddeev and V. N. Faddeeva,*Computational methods of linear algebra*, Translated by Robert C. Williams, W. H. Freeman and Co., San Francisco-London, 1963. MR**0158519****[6]**Ky Fan,*Note on 𝑀-matrices*, Quart. J. Math. Oxford Ser. (2)**11**(1960), 43–49. MR**117242**, https://doi.org/10.1093/qmath/11.1.43**[7]**G. E. Forsythe and E. G. Straus,*On best conditioned matrices*, Proc. Amer. Math. Soc.**6**(1955), 340–345. MR**69585**, https://doi.org/10.1090/S0002-9939-1955-0069585-4**[8]**A. GREENBAUM,*Comparison of Splittings Used With the Conjugate Gradient Method*, Lawrence Livermore Laboratories Report UCRL-80800, Livermore, Calif., March 1978.**[9]**Magnus R. Hestenes and Eduard Stiefel,*Methods of conjugate gradients for solving linear systems*, J. Research Nat. Bur. Standards**49**(1952), 409–436 (1953). MR**0060307****[10]**Magnus R. Hestenes,*The conjugate-gradient method for solving linear systems*, Proceedings of Symposia in Applied Mathematics. Vol. VI. Numerical analysis, McGraw-Hill Book Company, Inc., New York, for the American Mathematical Society, Providence, R. I., 1956, pp. 83–102. MR**0084178****[11]**Alston S. Householder,*The theory of matrices in numerical analysis*, Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London, 1964. MR**0175290****[12]**Shmuel Kaniel,*Estimates for some computational techniques in linear algebra*, Math. Comp.**20**(1966), 369–378. MR**234618**, https://doi.org/10.1090/S0025-5718-1966-0234618-4**[13]**D. S. KERSHAW,*The Incomplete Cholesky-Conjugate Gradient Method for the Iterative Solution of Systems of Linear Equations*, Lawrence Livermore Laboratory Report UCRL-78333, Livermore, Calif., 1976.**[14]**Cornelius Lanczos,*An iteration method for the solution of the eigenvalue problem of linear differential and integral operators*, J. Research Nat. Bur. Standards**45**(1950), 255–282. MR**0042791****[15]**Thomas A. Manteuffel,*The Tchebychev iteration for nonsymmetric linear systems*, Numer. Math.**28**(1977), no. 3, 307–327. MR**474739**, https://doi.org/10.1007/BF01389971**[16]**Thomas A. Manteuffel,*Shifted incomplete Cholesky factorization*, Sparse Matrix Proceedings 1978 (Sympos. Sparse Matrix Comput., Knoxville, Tenn., 1978) SIAM, Philadelphia, Pa., 1979, pp. 41–61. MR**566370****[17]**J. A. Meijerink and H. A. van der Vorst,*An iterative solution method for linear systems of which the coefficient matrix is a symmetric 𝑀-matrix*, Math. Comp.**31**(1977), no. 137, 148–162. MR**438681**, https://doi.org/10.1090/S0025-5718-1977-0438681-4**[18]**D. O'LEARY,*Hybrid Conjugate Gradient Algorithms*, Ph.D. Thesis, Computer Science Dept., Stanford Univ., 1975.**[19]**C. C. PAIGE,*The Computation of Eigenvalues and Eigenvectors of Very Large Sparse Matrices*, Ph.D. Thesis, London Univ., Institute of Computer Science, 1971.**[20]**C. C. Paige,*Computational variants of the Lanczos method for the eigenproblem*, J. Inst. Math. Appl.**10**(1972), 373–381. MR**334480****[21]**C. C. PAIGE & M. A. SAUNDERS,*Solution of Sparse Indefinite Systems of Equations and Least Squares Problems*, Standard Reports, STAN-CS-73-399, Nov. 1973.**[22]**J. K. Reid,*On the method of conjugate gradients for the solution of large sparse systems of linear equations*, Large sparse sets of linear equations (Proc. Conf., St. Catherine’s Coll., Oxford, 1970) Academic Press, London, 1971, pp. 231–254. MR**0341836****[23]**G. W. Stewart,*Introduction to matrix computations*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1973. Computer Science and Applied Mathematics. MR**0458818****[24]**Herbert L. Stone,*Iterative solution of implicit approximations of multidimensional partial differential equations*, SIAM J. Numer. Anal.**5**(1968), 530–558. MR**238504**, https://doi.org/10.1137/0705044**[25]**Richard S. Varga,*Factorization and normalized iterative methods*, Boundary problems in differential equations, Univ. of Wisconsin Press, Madison, Wis., 1960, pp. 121–142. MR**0121977****[26]**Richard S. Varga,*Matrix iterative analysis*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR**0158502****[27]**David M. Young,*Iterative solution of large linear systems*, Academic Press, New York-London, 1971. MR**0305568**

Retrieve articles in *Mathematics of Computation*
with MSC:
65F10,
15A06

Retrieve articles in all journals with MSC: 65F10, 15A06

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1980-0559197-0

Article copyright:
© Copyright 1980
American Mathematical Society