On variable-metric methods for sparse Hessians
HTML articles powered by AMS MathViewer
- by D. F. Shanno PDF
- Math. Comp. 34 (1980), 499-514 Request permission
Abstract:
The relationship between variable-metric methods derived by norm minimization and those derived by symmetrization of rank-one updates for sparse systems is studied, and an analogue of Dennis’s nonsparse symmetrization formula derived. A new method of using norm minimization to produce a sparse analogue of any nonsparse variable-metric method is proposed. The sparse BFGS generated by this method is tested against the sparse PSB and variable-memory conjugate gradient methods, with computational experience uniformly favoring the sparse BFGS.References
- C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Math. Comp. 19 (1965), 577–593. MR 198670, DOI 10.1090/S0025-5718-1965-0198670-6
- C. G. Broyden, The convergence of a class of double-rank minimization algorithms. II. The new algorithm, J. Inst. Math. Appl. 6 (1970), 222–231. MR 433870 A. BUCKLEY, A Combined Conjugate-Gradient Quasi-Newton Minimization Algorithm, Working Paper, Mathematics Department, Concordia University, Montreal, Quebec, Canada, 1977. W. C. DAVIDON, Variable Metric Method for Minimization, Report ANL-5990 Rev (1959), Argonne National Laboratories, Argonne, Ill., 1959. J. E. DENNIS, “On some methods based on Broyden’s secant approximation to the Hessian,” Numerical Methods for Nonlinear Optimization (F. A. Lootsma, Ed.), Academic Press, London, 1972, pp. 19-34.
- J. E. Dennis Jr. and R. B. Schnabel, Least change secant updates for quasi-Newton methods, SIAM Rev. 21 (1979), no. 4, 443–459. MR 545880, DOI 10.1137/1021091
- Anthony V. Fiacco and Garth P. McCormick, Nonlinear programming: Sequential unconstrained minimization techniques, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0243831
- R. Fletcher and M. J. D. Powell, A rapidly convergent descent method for minimization, Comput. J. 6 (1963/64), 163–168. MR 152116, DOI 10.1093/comjnl/6.2.163 R. FLETCHER, “A new approach to variable metric algorithms,” Comput. J., v. 13, 1970, pp. 317-322.
- Donald Goldfarb, A family of variable-metric methods derived by variational means, Math. Comp. 24 (1970), 23–26. MR 258249, DOI 10.1090/S0025-5718-1970-0258249-6
- D. Goldfarb, Generating conjugate directions without line searches using factorized variable metric updating formulas, Math. Programming 13 (1977), no. 1, 94–110. MR 503799, DOI 10.1007/BF01584327
- J. Greenstadt, Variations on variable-metric methods. (With discussion), Math. Comp. 24 (1970), 1–22. MR 258248, DOI 10.1090/S0025-5718-1970-0258248-4 M. D. HEBDEN, An Algorithm for Minimization Using Exact Second Derivatives, Report T. P. 515, AERE, Harwell, 1973. E. S. MARWIL, Exploiting Sparsity in Newton-Like Methods, Report TR78-335, Dept. of Computer Science, Cornell University, Ithaca, New York, 1978. J. J. MORÉ, B. S. GARBOW & K. E. HILLSTROM, Testing Unconstrained Optimization Software, Report TM-324, Applied Mathematics Division, Argonne National Laboratory, Argonne, Ill., 1978.
- Jorge J. Moré and Danny C. Sorensen, On the use of directions of negative curvature in a modified Newton method, Math. Programming 16 (1979), no. 1, 1–20. MR 517757, DOI 10.1007/BF01582091
- M. J. D. Powell, A new algorithm for unconstrained optimization, Nonlinear Programming (Proc. Sympos., Univ. of Wisconsin, Madison, Wis., 1970) Academic Press, New York, 1970, pp. 31–65. MR 0272162 R. B. SCHNABEL, Analyzing and Improving Quasi-Newton Methods for Unconstrained Optimization, Report TR77-320, Dept. of Computer Science, Cornell University, Ithaca, New York, 1977.
- L. K. Schubert, Modification of a quasi-Newton method for nonlinear equations with a sparse Jacobian, Math. Comp. 24 (1970), 27–30. MR 258276, DOI 10.1090/S0025-5718-1970-0258276-9
- D. F. Shanno, Conditioning of quasi-Newton methods for function minimization, Math. Comp. 24 (1970), 647–656. MR 274029, DOI 10.1090/S0025-5718-1970-0274029-X
- David F. Shanno, Conjugate gradient methods with inexact searches, Math. Oper. Res. 3 (1978), no. 3, 244–256. MR 506662, DOI 10.1287/moor.3.3.244
- D. F. Shanno and K. H. Phua, Numerical comparison of several variable-metric algorithms, J. Optim. Theory Appl. 25 (1978), no. 4, 507–518. MR 525744, DOI 10.1007/BF00933517 D. F. SHANNO & K. H. PHUA, “Minimization of unconstrained multivariate functions,” ACM Trans. Math. Software, v. 2, 1976, pp. 87-94.
- Ph. L. Toint, On sparse and symmetric matrix updating subject to a linear equation, Math. Comp. 31 (1977), no. 140, 954–961. MR 455338, DOI 10.1090/S0025-5718-1977-0455338-4
- Ph. L. Toint, Some numerical results using a sparse matrix updating formula in unconstrained optimization, Math. Comp. 32 (1978), no. 143, 839–851. MR 483452, DOI 10.1090/S0025-5718-1978-0483452-7
Additional Information
- © Copyright 1980 American Mathematical Society
- Journal: Math. Comp. 34 (1980), 499-514
- MSC: Primary 65K10; Secondary 15A57, 90C30
- DOI: https://doi.org/10.1090/S0025-5718-1980-0559198-2
- MathSciNet review: 559198