Nonlinear curve-fitting in the $L_{1}$ and $L_{\infty }$ norms
HTML articles powered by AMS MathViewer
- by Richard L. Shrager and Edward Hill PDF
- Math. Comp. 34 (1980), 529-541 Request permission
Abstract:
In extending the Levenberg-Marquardt ${L_2}$ method for nonlinear curve-fitting to the ${L_1}$ and ${L_\infty }$ norms, the following problems arise, but are dealt with successfully: (1) Trial parameters are generated by linear programming, which can be time-consuming. (2) Trial parameters are not uniquely specified in some cases. (3) There are intervals of the search parameter for which the trial parameters remain constant. (4) In ${L_1}$, the trial parameters are discontinuous with respect to the search parameter. It is shown that linear constraints on the parameters are easily included in the computations. Finally, some numerical results are presented.References
- D. H. Anderson and M. R. Osborne, Discrete, nonlinear approximation problems in polyhedral norms, Numer. Math. 28 (1977), no. 2, 143–156. MR 448807, DOI 10.1007/BF01394449
- D. H. Anderson and M. R. Osborne, Discrete, nonlinear approximation problems in polyhedral norms. A Levenberg-like algorithm, Numer. Math. 28 (1977), no. 2, 157–170. MR 445788, DOI 10.1007/BF01394450
- I. Barrodale and F. D. K. Roberts, An improved algorithm for discrete $l_{1}$ linear approximation, SIAM J. Numer. Anal. 10 (1973), 839–848. MR 339449, DOI 10.1137/0710069 I. BARRODALE & F. D. K. ROBERTS, “Solution of an over-determined system of equations in the ${L_1}$ norm,” Comm. ACM, v. 17, 1974, pp. 319-320.
- I. Barrodale and C. Phillips, An improved algorithm for discrete Chebyshev linear approximation, Proceedings of the Fourth Manitoba Conference on Numerical Mathematics (Winnipeg, Man., 1974) Congr. Numer., No. XII, Utilitas Math., Winnipeg, Man., 1975, pp. 177–190. MR 0373585 I. BARRODALE & F. D. K. ROBERTS, An Efficient Algorithm for Discrete ${L_1}$ Linear Approximation with Linear Constraints, Tech. Dept. DM-103-IR, Dept. of Math., Univ. of Victoria Victoria, B. C., Canada, July 1977. I. BARRODALE & F. D. K. ROBERTS, Solution of the Constrained ${L_1}$ Linear Approximation Problem, Tech. Dept. DM-104-IR, Dept. of Math., Univ. of Victoria, Victoria, B. C., Canada, July 1977.
- Richard H. Bartels and Gene H. Golub, Stable numerical methods for obtaining the Chebyshev solution to an overdetermined system of equations, Comm. ACM 11 (1968), 401–406. MR 0240957, DOI 10.1145/363347.363364
- Richard H. Bartels, Andrew R. Conn, and James W. Sinclair, Minimization techniques for piecewise differentiable functions: the $l_{1}$ solution to an overdetermined linear system, SIAM J. Numer. Anal. 15 (1978), no. 2, 224–241. MR 501831, DOI 10.1137/0715015
- Richard H. Bartels, Andrew R. Conn, and Christakis Charalambous, On Cline’s direct method for solving overdetermined linear systems in the $l_{\infty }$ sense, SIAM J. Numer. Anal. 15 (1978), no. 2, 255–270. MR 501832, DOI 10.1137/0715017
- E. W. Cheney, Introduction to approximation theory, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0222517
- Saul I. Gass, Linear programming, 4th ed., McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1975. Methods and applications. MR 0373586
- P. LaFata and J. B. Rosen, An interactive display for approximation by linear programming, Comm. ACM 13 (1970), 651–659. MR 0267810, DOI 10.1145/362790.362793
- Kenneth Levenberg, A method for the solution of certain non-linear problems in least squares, Quart. Appl. Math. 2 (1944), 164–168. MR 10666, DOI 10.1090/S0033-569X-1944-10666-0
- Donald W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Indust. Appl. Math. 11 (1963), 431–441. MR 153071, DOI 10.1137/0111030
- G. F. McCormick and V. A. Sposito, Using the $L_{2}$-estimator in $L_{1}$-estimation, SIAM J. Numer. Anal. 13 (1976), no. 3, 337–343. MR 448808, DOI 10.1137/0713030
- Duane A. Meeter, On a theorem used in nonlinear least squares, SIAM J. Appl. Math. 14 (1966), 1176–1179. MR 207094, DOI 10.1137/0114094 D. D. MORRISON, Methods for Non-Linear Least Squares Problems and Convergence Proofs. Tracking Programs and Orbit Determination, Proc. Jet Propulsion Lab. Seminar, 1970, pp. 1-9.
- M. R. Osborne and G. A. Watson, An algorithm for minimax approximation in the nonlinear case, Comput. J. 12 (1969/70), 63–68. MR 245314, DOI 10.1093/comjnl/12.1.63
- M. R. Osborne and G. A. Watson, On an algorithm for discrete nonlinear $L_{1}$ approximation, Comput. J. 14 (1971), 184–188. MR 278491, DOI 10.1093/comjnl/14.2.184
- M. R. Osborne and G. A. Watson, Nonlinear approximation problems in vector norms, Numerical analysis (Proc. 7th Biennial Conf., Univ. Dundee, Dundee, 1977) Lecture Notes in Pure and Appl. Math., vol. 36, Dekker, New York, 1978, pp. 117–132. MR 492763
- John R. Rice, The approximation of functions. Vol. I: Linear theory, Addison-Wesley Publishing Co., Reading, Mass.-London, 1964. MR 0166520
- S. R. Searle, Linear models, John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0293792
- Richard I. Shrager, Nonlinear regression with linear constraints: An extension of the magnified diagonal method, J. Assoc. Comput. Mach. 17 (1970), 446–452. MR 278742, DOI 10.1145/321592.321597 R. I. SHRAGER, “Quadratic programming for nonlinear regression,” Comm. ACM, v. 15, 1972, pp. 41-45. R. I. SHRAGER & E. HILL, “Some properties of the Levenberg method in the ${L_1}$ and ${L_\infty }$ norms,” 1979. Available from the authors.
- G. A. Watson, A method for calculating best non-linear Chebyshev approximations, J. Inst. Math. Appl. 18 (1976), no. 3, 351–360. MR 454480, DOI 10.1093/imamat/18.3.351
Additional Information
- © Copyright 1980 American Mathematical Society
- Journal: Math. Comp. 34 (1980), 529-541
- MSC: Primary 41A45; Secondary 41A50, 65D10
- DOI: https://doi.org/10.1090/S0025-5718-1980-0559201-X
- MathSciNet review: 559201