## High-precision values of the gamma function and of some related coefficients

HTML articles powered by AMS MathViewer

- by Arne Fransén and Staffan Wrigge PDF
- Math. Comp.
**34**(1980), 553-566 Request permission

Corrigendum: Math. Comp.

**37**(1981), 233-235.

## Abstract:

In this paper we determine numerical values to 80D of the coefficients in the Taylor series expansion ${\Gamma ^m}(s + x) = \Sigma _0^\infty {g_k}(m,s){x^k}$ for certain values of*m*and

*s*and use these values to calculate $\Gamma (p/q)\;(p,q = 1,2, \ldots ,10;\;p < q)$ and ${\min _{x > 0}}\Gamma (x)$ to 80D. Finally, we obtain a high-precision value of the integral $\smallint _0^\infty {(\Gamma (x))^{ - 1}}\;dx$.

## References

- Milton Abramowitz and Irene A. Stegun,
*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1964. For sale by the Superintendent of Documents. MR**0167642** - L. Bourguet,
*Sur les intégrales eulériennes et quelques autres fonctions uniformes*, Acta Math.**2**(1883), no. 1, 261–295 (French). MR**1554599**, DOI 10.1007/BF02415217 - Bradley D. Carter and Melvin D. Springer,
*The distribution of products, quotients and powers of independent $H$-function variates*, SIAM J. Appl. Math.**33**(1977), no. 4, 542–558. MR**483133**, DOI 10.1137/0133036
A. FRANSÉN, - Arne Fransén,
*Accurate determination of the inverse gamma integral*, BIT**19**(1979), no. 1, 137–138. MR**530126**, DOI 10.1007/BF01931232
D. C. GALAND & P. F. BYRD, “High accuracy gamma function values for some rational arguments,” - Koji Katayama,
*On Ramanujan’s formula for values of Riemann zeta-function at positive odd integers*, Acta Arith.**22**(1973), 149–155. MR**321887**, DOI 10.4064/aa-22-2-149-155
A. H. MORRIS, JR., “Table of the Riemann Zeta function for integer arguments,” reviewed in - John W. Wrench Jr.,
*Concerning two series for the gamma function*, Math. Comp.**22**(1968), 617–626. MR**237078**, DOI 10.1090/S0025-5718-1968-0237078-4
S. WRIGGE, - H. S. Wrigge,
*An elliptic integral identity*, Math. Comp.**27**(1973), 839–840. MR**324083**, DOI 10.1090/S0025-5718-1973-0324083-4
S. WRIGGE,

*Concerning the Definite Integral*$\smallint _0^\infty {(\Gamma (x))^{ - 1}}\;dx$, FOA Rapport, C10100-M4 (National Defence Research Institute, S-104 50 Stockholm 80, Sweden), 1978.

*Math. Comp.*, v. 22, 1968, pp. 885-887. M. L. GLASSER & V. E. WOOD, “A closed form evaluation of the elliptic integral,”

*Math. Comp.*, v. 25, 1971, pp. 535-536.

*Math. Comp.*, v. 27, 1973, pp. 673-674, RMT

**32**. A. H. MORRIS, JR., “Tables of coefficients of the Maclaurin expansions of $1/\Gamma (z + 1)$ and $1/\Gamma (z + 2)$,” reviewed in

*Math. Comp.*, v. 27, 1973, p. 674, RMT

**32**and RMT

**33**. N. NIELSEN, Die

*Gammafunktion*, Chelsea, New York, 1965. H. P. ROBINSON, Private communications, 1978-1979.

*Contributions to the Theory of Elliptic Integrals*, FOA P Rapport, C 836-M6 (National Defence Research Institute, S-104 50 Stockholm 80, Sweden), 1973.

*Contributions to the Theory of Elliptic Integrals*(Part 2), FOA Rapport, C10003-M6 (National Defence Research Institute, S-104 50 Stockholm 80, Sweden), 1974.

## Additional Information

- © Copyright 1980 American Mathematical Society
- Journal: Math. Comp.
**34**(1980), 553-566 - MSC: Primary 65A05; Secondary 65D20
- DOI: https://doi.org/10.1090/S0025-5718-1980-0559204-5
- MathSciNet review: 559204