Issues in nonlinear hyperperfect numbers
HTML articles powered by AMS MathViewer
- by Daniel Minoli PDF
- Math. Comp. 34 (1980), 639-645 Request permission
Abstract:
Hyperperfect numbers (HP) are a generalization of perfect numbers and as such share remarkably similar properties. In this note we show, among other things, that if $m = p_1^{{\alpha _1}}p_2^{{\alpha _2}}$ is 2-HP then ${\alpha _2} = 1$, with ${p_1} = 3$, ${p_2} = {3^{{\alpha _1} + 1}} - 2$; this is in agreement with the structure of the perfect case (1-HP) stating that such a number is of the form $m = p_1^{{\alpha _1}}{p_2}$ with ${p_1} = 2$ and ${p_2} = {2^{{\alpha _1} + 1}} - 1$.References
-
L. E. DICKSON, History of the Theory of Numbers, Vol. 1, Chelsea, New York, 1952.
- H. L. Abbott, C. E. Aull, Ezra Brown, and D. Suryanarayana, Quasiperfect numbers, Acta Arith. 22 (1973), 439–447. MR 316368, DOI 10.4064/aa-22-4-439-447 M. KISHORE, “Odd almost perfect numbers,” Notices Amer. Math. Soc., v. 22, 1975, p. A-380, Abstract #75FA92.
- R. P. Jerrard and Nicholas Temperley, Almost perfect numbers, Math. Mag. 46 (1973), 84–87. MR 376511, DOI 10.2307/2689036
- James T. Cross, A note on almost perfect numbers, Math. Mag. 47 (1974), 230–231. MR 354536, DOI 10.2307/2689220
- Peter Hagis Jr. and Graham Lord, Quasi-amicable numbers, Math. Comp. 31 (1977), no. 138, 608–611. MR 434939, DOI 10.1090/S0025-5718-1977-0434939-3
- Henri Cohen, On amicable and sociable numbers, Math. Comp. 24 (1970), 423–429. MR 271004, DOI 10.1090/S0025-5718-1970-0271004-6
- Paul Bratley, Fred Lunnon, and John McKay, Amicable numbers and their distribution, Math. Comp. 24 (1970), 431–432. MR 271005, DOI 10.1090/S0025-5718-1970-0271005-8
- Walter E. Beck and Rudolph M. Najar, Fixed points of certain arithmetic functions, Fibonacci Quart. 15 (1977), no. 4, 337–342. MR 491437
- Peter Hagis Jr., Lower bounds for relatively prime amicable numbers of opposite parity, Math. Comp. 24 (1970), 963–968. MR 276167, DOI 10.1090/S0025-5718-1970-0276167-4
- Peter Hagis Jr., Unitary amicable numbers, Math. Comp. 25 (1971), 915–918. MR 299551, DOI 10.1090/S0025-5718-1971-0299551-2
- Masao Kishore, Odd integers $N$ with five distinct prime factors for which $2-10^{-12}<\sigma (N)/N<2+10^{-12}$, Math. Comp. 32 (1978), no. 141, 303–309. MR 485658, DOI 10.1090/S0025-5718-1978-0485658-X
- Leonard Eugene Dickson, Finiteness of the Odd Perfect and Primitive Abundant Numbers with $n$ Distinct Prime Factors, Amer. J. Math. 35 (1913), no. 4, 413–422. MR 1506194, DOI 10.2307/2370405
- Peter Hagis Jr., A lower bound for the set of odd perfect numbers, Math. Comp. 27 (1973), 951–953. MR 325507, DOI 10.1090/S0025-5718-1973-0325507-9
- Bryant Tuckerman, A search procedure and lower bound for odd perfect numbers, Math. Comp. 27 (1973), 943–949. MR 325506, DOI 10.1090/S0025-5718-1973-0325506-7
- S. J. Benkoski and P. Erdős, On weird and pseudoperfect numbers, Math. Comp. 28 (1974), 617–623. MR 347726, DOI 10.1090/S0025-5718-1974-0347726-9 A. E. ZACHARIOV, “Perfect, semi-perfect and Ore numbers,” Bull. Soc. Math. Grèce, v. 13, 1972, pp. 12-22.
- Daniel Minoli and Robert Bear, Hyperperfect numbers, Pi Mu Epsilon J. 6 (1975), no. 3, 153–157. MR 389749
- Daniel Minoli, Structure issues for hyperperfect numbers, Fibonacci Quart. 19 (1981), no. 1, 6–14. MR 606102 D. M. YOUNG & R. T. GREGORY, A Survey of Numerical Analysis, Addison-Wesley, Reading, Mass., 1973.
Additional Information
- © Copyright 1980 American Mathematical Society
- Journal: Math. Comp. 34 (1980), 639-645
- MSC: Primary 10A20
- DOI: https://doi.org/10.1090/S0025-5718-1980-0559206-9
- MathSciNet review: 559206