## Generalized OCI schemes for boundary layer problems

HTML articles powered by AMS MathViewer

- by Alan E. Berger, Jay M. Solomon, Melvyn Ciment, Stephen H. Leventhal and Bernard C. Weinberg PDF
- Math. Comp.
**35**(1980), 695-731 Request permission

## Abstract:

A family of tridiagonal formally fourth-order difference schemes is developed for a class of singular perturbation problems. These schemes have no cell Reynolds number limitation and satisfy a discrete maximum principle. Error estimates and numerical results for this family of methods are given, and are compared with those for several other schemes.## References

- L. R. Abrahamsson, H. B. Keller, and H. O. Kreiss,
*Difference approximations for singular perturbations of systems of ordinary differential equations*, Numer. Math.**22**(1974), 367–391. MR**388784**, DOI 10.1007/BF01436920 - D. N. de G. Allen and R. V. Southwell,
*Relaxation methods applied to determine the motion, in two dimensions, of a viscous fluid past a fixed cylinder*, Quart. J. Mech. Appl. Math.**8**(1955), 129–145. MR**70367**, DOI 10.1093/qjmam/8.2.129
A. E. BERGER, J. M. SOLOMON & M. CIMENT, "On a uniformly accurate difference method for a singular perturbation problem." (In preparation.)
- T. H. Chong,
*A variable mesh finite difference method for solving a class of parabolic differential equations in one space variable*, SIAM J. Numer. Anal.**15**(1978), no. 4, 835–857. MR**501973**, DOI 10.1137/0715055
I. CHRISTIE & A. R. MITCHELL, "Upwinding of high order Galerkin methods in conduction-convection problems," - Melvyn Ciment, Stephen H. Leventhal, and Bernard C. Weinberg,
*The operator compact implicit method for parabolic equations*, J. Comput. Phys.**28**(1978), no. 2, 135–166. MR**505588**, DOI 10.1016/0021-9991(78)90031-1 - Fred Dorr,
*The numerical solution of singular perturbations of boundary value problems*, SIAM J. Numer. Anal.**7**(1970), 281–313. MR**267781**, DOI 10.1137/0707021 - Byron L. Ehle,
*$A$-stable methods and Padé approximations to the exponential*, SIAM J. Math. Anal.**4**(1973), 671–680. MR**331787**, DOI 10.1137/0504057
T. M. EL-MISTIKAWY & M. J. WERLE, "Numerical method for boundary layers with blowing—the exponential box scheme," - Richard S. Hirsh and David H. Rudy,
*The role of diagonal dominance and cell Reynolds number in implicit difference methods for fluid mechanics problems*, J. Comput. Phys.**16**(1974), 304–310. MR**381512**, DOI 10.1016/0021-9991(74)90098-9 - Thomas J. R. Hughes, Wing Kam Liu, and Alec Brooks,
*Finite element analysis of incompressible viscous flows by the penalty function formulation*, J. Comput. Phys.**30**(1979), no. 1, 1–60. MR**524162**, DOI 10.1016/0021-9991(79)90086-X - A. M. Il′in,
*A difference scheme for a differential equation with a small parameter multiplying the highest derivative*, Mat. Zametki**6**(1969), 237–248 (Russian). MR**260195** - Eugene Isaacson and Herbert Bishop Keller,
*Analysis of numerical methods*, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR**0201039** - R. Bruce Kellogg and Alice Tsan,
*Analysis of some difference approximations for a singular perturbation problem without turning points*, Math. Comp.**32**(1978), no. 144, 1025–1039. MR**483484**, DOI 10.1090/S0025-5718-1978-0483484-9 - Heinz-Otto Kreiss,
*Difference approximations for singular perturbation problems*, Numerical solutions of boundary value problems for ordinary differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1974) Academic Press, New York, 1975, pp. 199–211. MR**0405869** - Heinz-Otto Kreiss and Nancy Nichols,
*Numerical methods for singular perturbation problems*, Computing methods in applied sciences (Second Internat. Sympos.,Versailles, 1975) Lecture Notes in Phys., Vol. 58, Springer, Berlin, 1976, pp. 544–558. MR**0445849** - D. C. L. Lam and R. B. Simpson,
*Centered differencing and the box scheme for diffusion convection problems*, J. Comput. Phys.**22**(1976), no. 4, 486–500. MR**475566**, DOI 10.1016/0021-9991(76)90045-0
J. J. H. MILLER, "Some finite difference schemes for a singular perturbation problem," in - John J. H. Miller,
*Sufficient conditions for the convergence, uniformly in $\varepsilon$, of a three-point difference scheme for a singular perturbation problem*, Numerical treatment of differential equations in applications (Proc. Meeting, Math. Res. Center, Oberwolfach, 1977) Lecture Notes in Math., vol. 679, Springer, Berlin, 1978, pp. 85–91. MR**515572** - Carl E. Pearson,
*On a differential equation of boundary layer type*, J. Math. and Phys.**47**(1968), 134–154. MR**228189** - Murray H. Protter and Hans F. Weinberger,
*Maximum principles in differential equations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR**0219861** - Robert D. Richtmyer and K. W. Morton,
*Difference methods for initial-value problems*, 2nd ed., Interscience Tracts in Pure and Applied Mathematics, No. 4, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR**0220455** - Patrick J. Roache,
*Computational fluid dynamics*, Hermosa Publishers, Albuquerque, N.M., 1976. With an appendix (“On artificial viscosity”) reprinted from J. Computational Phys. 10 (1972), no. 2, 169–184; Revised printing. MR**0411358** - Donald R. Smith,
*The multivariable method in singular perturbation analysis*, SIAM Rev.**17**(1975), 221–273. MR**361331**, DOI 10.1137/1017032
B. K. SWARTZ, "The construction of finite difference analogs of some finite element schemes," in - M. van Veldhuizen,
*Higher order methods for a singularly perturbed problem*, Numer. Math.**30**(1978), no. 3, 267–279. MR**501937**, DOI 10.1007/BF01411843 - M. van Veldhuizen,
*Higher order schemes of positive type for singular perturbation problems*, Numerical analysis of singular perturbation problems (Proc. Conf., Math. Inst., Catholic Univ., Nijmegen, 1978) Academic Press, London-New York, 1979, pp. 361–383. MR**556526** - Richard S. Varga,
*Matrix iterative analysis*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR**0158502**

*Internat. J. Numer. Methods Engrg.*, v. 12, 1978, pp. 1764-1771.

*AIAA J.*, v. 16, 1978, pp. 749-751. J. C. HEINRICH, P. S. HUYAKORN, O. C. ZIENKIEWICZ & A. R. MITCHELL, "An upwind finite element scheme for two-dimensional convective transport equation,"

*Internat. J. Numer. Methods Engrg.*, v. 11, 1977. pp. 131-143. J. C. HEINRICH & O. C. ZIENKIEWICZ, "Quadratic finite element schemes for two-dimensional convective-transport problems,"

*Internat. J. Numer. Methods Engrg.*, v. 11, 1977, pp. 1831-1844.

*Constructive Function Theory*, Proc. Internat. Conf. on Constr. Fcn. Theory, Blagoevgrad, 30 May-4 June 1977. (To appear.)

*Mathematical Aspects of Finite Elements in Partial Differential Equations*(C. de Boor, Ed.), Academic Press, New York, 1974, pp. 279-312.

## Additional Information

- © Copyright 1980 American Mathematical Society
- Journal: Math. Comp.
**35**(1980), 695-731 - MSC: Primary 65L10; Secondary 65M10
- DOI: https://doi.org/10.1090/S0025-5718-1980-0572850-8
- MathSciNet review: 572850