On the coupling of boundary integral and finite element methods
HTML articles powered by AMS MathViewer
- by Claes Johnson and J.-Claude Nédélec PDF
- Math. Comp. 35 (1980), 1063-1079 Request permission
Abstract:
Let ${\Omega ^c}$ be the complementary of a bounded regular domain in ${{\mathbf {R}}^2}$ of boundary $\Gamma$. We consider the problem (1) \[ \left \{ {\begin {array}{*{20}{c}} {\Delta u = f;} & {{\text {in}}\;{\Omega ^c},} \\ {u{|_\Gamma } = {u_{0,}}} & {} \\ \end {array} } \right .\] where f has its support in a bounded subdomain ${\Omega _1}$ of ${\Omega ^c}$. Let ${\Gamma _2}$ be the common boundary of ${\Omega _1}$ and ${\Omega _2} = {\Omega ^c} - {\Omega _1}$. We solve the problem (1) by using an equivalent system of equations involving an integral equation on ${\Gamma ^2}$ coupled with the equation: (2) \[ \left \{ {\begin {array}{*{20}{c}} {\Delta u = f} \hfill & {{\text {in}}\;{\Omega _1},} \hfill \\ {u{|_\Gamma } = {u_0},} \hfill & {} \hfill \\ {u{|_{{\Gamma _2}}} = \lambda .} \hfill & {} \hfill \\ \end {array} } \right .\] We introduce a finite element approximation of Eq. (2) and of the integral equation and we prove optimal error estimates.References
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 0520174 M. DJAOUA, Equations Intégrales pour un Problème Singulier dans le Plan, These 3é cycle, Paris, 1977. J. GIROIRE, Rapport Interne à l’Ecole Polytechnique, Centre de Mathématiques Appliquées, Palaiseau, 1976.
- Donald Greenspan and Peter Werner, A numerical method for the exterior Dirichlet problem for the reduced wave equation, Arch. Rational Mech. Anal. 23 (1966), 288–316. MR 238501, DOI 10.1007/BF00281165
- George C. Hsiao and Wolfgang L. Wendland, A finite element method for some integral equations of the first kind, J. Math. Anal. Appl. 58 (1977), no. 3, 449–481. MR 461963, DOI 10.1016/0022-247X(77)90186-X
- M. N. Le Roux, Méthode d’éléments finis pour la résolution numérique de problèmes extérieurs en dimension $2$, RAIRO Anal. Numér. 11 (1977), no. 1, 27–60, 112 (French, with English summary). MR 448954, DOI 10.1051/m2an/1977110100271 J. C. NEDELEC, Cours de l’Ecole d’Eté d’Analyse Numérique, C.E.A., I.R.I.A., E.P.F., 1977.
- J.-C. Nédélec and J. Planchard, Une méthode variationnelle d’éléments finis pour la résolution numérique d’un problème extérieur dans $R^{3}$, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 105–129 (French, with English summary). MR 424022
- R. Seeley, Topics in pseudo-differential operators, Pseudo-Diff. Operators (C.I.M.E., Stresa, 1968) Edizioni Cremonese, Rome, 1969, pp. 167–305. MR 0259335
- P. Silvester and M.-S. Hsieh, Finite-element solution of $2$-dimensional exterior-field problems, Proc. Inst. Electr. Engrs. 118 (1971), 1743–1748. MR 334553, DOI 10.1049/piee.1971.0320
- O. C. Zienkiewicz, D. W. Kelly, and P. Bettess, The coupling of the finite element method and boundary solution procedures, Internat. J. Numer. Methods Engrg. 11 (1977), no. 2, 355–375. MR 451784, DOI 10.1002/nme.1620110210
- W. L. Wendland, Elliptic systems in the plane, Monographs and Studies in Mathematics, vol. 3, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979. MR 518816
Additional Information
- © Copyright 1980 American Mathematical Society
- Journal: Math. Comp. 35 (1980), 1063-1079
- MSC: Primary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1980-0583487-9
- MathSciNet review: 583487