Spectral and pseudospectral methods for advection equations
HTML articles powered by AMS MathViewer
- by Joseph E. Pasciak PDF
- Math. Comp. 35 (1980), 1081-1092 Request permission
Abstract:
Spectral and pseudo spectral methods for advection equations are investigated. A basic framework is given which allows the application of techniques used in finite element analysis to spectral methods with trigonometric polynomials. Error estimates for semidiscrete spectral and pseudo spectral as well as fully discrete explicit pseudo spectral methods are given. The approximation schemes are shown to converge with infinite order.References
- Garth A. Baker, James H. Bramble, and Vidar Thomée, Single step Galerkin approximations for parabolic problems, Math. Comp. 31 (1977), no. 140, 818–847. MR 448947, DOI 10.1090/S0025-5718-1977-0448947-X
- J. H. Bramble, A. H. Schatz, V. Thomée, and L. B. Wahlbin, Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations, SIAM J. Numer. Anal. 14 (1977), no. 2, 218–241. MR 448926, DOI 10.1137/0714015
- Paul L. Butzer and Rolf J. Nessel, Fourier analysis and approximation, Pure and Applied Mathematics, Vol. 40, Academic Press, New York-London, 1971. Volume 1: One-dimensional theory. MR 0510857, DOI 10.1007/978-3-0348-7448-9 O. CHRISTENSEN & L. PRAHM, "A pseudo spectral model for dispersion of atmospheric pollutants," J. Appl. Meteor., v. 15, 1976, pp. 1284-1294.
- Bengt Fornberg, On a Fourier method for the integration of hyperbolic equations, SIAM J. Numer. Anal. 12 (1975), no. 4, 509–528. MR 421096, DOI 10.1137/0712040 J. GAZDAG, "Numerical convective schemes based on accurate computation of space derivatives," J. Comput. Phys., v. 13, 1973, pp. 100-113. D. GOTTLIEB & S. ORSZAG, Numerical Analysis of Spectral Methods, SIAM-CBMS-NSF Conference Series, 1977, pp. 121-138.
- S. G. Kreĭn and Ju. I. Petunin, Scales of Banach spaces, Uspehi Mat. Nauk 21 (1966), no. 2 (128), 89–168 (Russian). MR 0193499
- Heinz-Otto Kreiss and Joseph Oliger, Stability of the Fourier method, SIAM J. Numer. Anal. 16 (1979), no. 3, 421–433. MR 530479, DOI 10.1137/0716035
- Andrew Majda, James McDonough, and Stanley Osher, The Fourier method for nonsmooth initial data, Math. Comp. 32 (1978), no. 144, 1041–1081. MR 501995, DOI 10.1090/S0025-5718-1978-0501995-4 S. ORZAG, "Comparison of pseudospectral and spectral approximations," Stud. Appl. Math., v. 51, 1972, pp. 253-259.
- Michael Taylor, Pseudo differential operators, Lecture Notes in Mathematics, Vol. 416, Springer-Verlag, Berlin-New York, 1974. MR 0442523, DOI 10.1007/BFb0101246
Additional Information
- © Copyright 1980 American Mathematical Society
- Journal: Math. Comp. 35 (1980), 1081-1092
- MSC: Primary 65M10; Secondary 65M15
- DOI: https://doi.org/10.1090/S0025-5718-1980-0583488-0
- MathSciNet review: 583488