The construction of Jacobi and periodic Jacobi matrices with prescribed spectra
HTML articles powered by AMS MathViewer
- by Warren E. Ferguson PDF
- Math. Comp. 35 (1980), 1203-1220 Request permission
Abstract:
The spectral properties of Jacobi and periodic Jacobi matrices are analyzed and algorithms for the construction of Jacobi and periodic Jacobi matrices with prescribed spectra are presented. Numerical evidence demonstrates that these algorithms are of practical utility. These algorithms have been used in studies of the periodic Toda lattice, and might also be used in studies of inverse eigenvalue problems for Sturm-Liouville equations and Hill’s equation.References
- Ȧke Björck and Gene H. Golub, Eigenproblems for matrices associated with periodic boundary conditions, SIAM Rev. 19 (1977), no. 1, 5–16. MR 428696, DOI 10.1137/1019002
- D. Boley and G. H. Golub, Inverse eigenvalue problems for band matrices, Numerical analysis (Proc. 7th Biennial Conf., Univ. Dundee, Dundee, 1977) Lecture Notes in Math., Vol. 630, Springer, Berlin, 1978, pp. 23–31. MR 0474741
- D. L. Boley and G. H. Golub, The matrix inverse eigenvalue problem for periodic Jacobi matrices, Proceedings of the Fourth Symposium on Basic Problems of Numerical Mathematics (Plzeň, 1978) Charles Univ., Prague, 1978, pp. 63–76. MR 566155 C. DE BOOR & G. GOLUB, The Numerically Stable Reconstruction of a Jacobi Matrix from Spectral Data, MRC-TSR-1727, Mathematics Research Center, Univ. of Wisconsin, Madison, Wis., 1977. W. FERGUSON, H. FLASCHKA & D. W. McLAUGHLIN, "Nonlinear normal modes for the periodic Toda lattice." (Preprint.)
- H. Flaschka, The Toda lattice. I. Existence of integrals, Phys. Rev. B (3) 9 (1974), 1924–1925. MR 408647
- H. Flaschka and D. W. McLaughlin, Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions, Progr. Theoret. Phys. 55 (1976), no. 2, 438–456. MR 403368, DOI 10.1143/PTP.55.438
- F. R. Gantmacher and M. G. Kreĭn, Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme, Mathematische Lehrbücher und Monographien, I. Abteilung, Bd. V, Akademie-Verlag, Berlin, 1960 (German). Wissenschaftliche Bearbeitung der deutschen Ausgabe: Alfred Stöhr. MR 0114338
- Gene H. Golub, Some modified matrix eigenvalue problems, SIAM Rev. 15 (1973), 318–334. MR 329227, DOI 10.1137/1015032
- Gene H. Golub and John H. Welsch, Calculation of Gauss quadrature rules, Math. Comp. 23 (1969), 221-230; addendum, ibid. 23 (1969), no. 106, loose microfiche suppl, A1–A10. MR 0245201, DOI 10.1090/S0025-5718-69-99647-1
- Ole H. Hald, Inverse eigenvalue problems for Jacobi matrices, Linear Algebra Appl. 14 (1976), no. 1, 63–85. MR 447279, DOI 10.1016/0024-3795(76)90064-1
- Harry Hochstadt, On the construction of a Jacobi matrix from spectral data, Linear Algebra Appl. 8 (1974), 435–446. MR 382314, DOI 10.1016/0024-3795(74)90077-9
- William J. Kammerer, Polynomial approximations to finitely oscillating functions, Math. Comp. 15 (1961), 115–119. MR 123865, DOI 10.1090/S0025-5718-1961-0123865-3 W. MAGNES & S. WINKLER, Hill’s Equation, Wiley, New York, 1965.
- Pierre van Moerbeke, The spectrum of Jacobi matrices, Invent. Math. 37 (1976), no. 1, 45–81. MR 650253, DOI 10.1007/BF01418827
- G. W. Stewart, Introduction to matrix computations, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1973. MR 0458818
- J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965. MR 0184422
- Handbook for automatic computation. Vol. II, Die Grundlehren der mathematischen Wissenschaften, Band 186, Springer-Verlag, New York-Heidelberg, 1971. Linear algebra; Compiled by J. H. Wilkinson and C. Reinsch. MR 0461856
Additional Information
- © Copyright 1980 American Mathematical Society
- Journal: Math. Comp. 35 (1980), 1203-1220
- MSC: Primary 65F30; Secondary 15A18, 58F07, 65L15
- DOI: https://doi.org/10.1090/S0025-5718-1980-0583498-3
- MathSciNet review: 583498