Optimal partitioning of Newton’s method for calculating roots
Authors:
Günter Meinardus and G. D. Taylor
Journal:
Math. Comp. 35 (1980), 1221-1230
MSC:
Primary 65H05; Secondary 41A30
DOI:
https://doi.org/10.1090/S0025-5718-1980-0583499-5
MathSciNet review:
583499
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper, an algorithm is given for calculating roots via Newton’s method initialized with a piecewise best starting approximation. The piecewise best starting approximation corresponds to an optimal partitioning of the interval of the domain of Newton’s method. Explicit formulas are given when piecewise linear polynomials are used for the best starting approximations. Specific tables are given for square roots, cube roots and reciprocal square roots.
-
N. I. ACHIESER, Theory of Approximations, Ungar, New York, 1956.
M.ANDREWS, S. F. McCORMICK & G. D. TAYLOR, "Evaluation of functions on microprocessors: Square root," Comput. Math. Appl., v. 4, 1978, pp. 359-367.
M. ANDREWS, S. F. McCORMICK & G. D. TAYLOR, Evaluation of the Square Root Function on Microprocessors, Proc. of ACM, Houston, Texas, October 1976, pp. 185-191.
- Tien Chi Chen, Automatic computation of exponentials, logarithms, ratios and square roots, IBM J. Res. Develop. 16 (1972), 380–388. Mathematics of numerical computation. MR 336965, DOI https://doi.org/10.1147/rd.164.0380 W. J. CODY, "Double-precision square root for the CDC-3600," Comm. ACM, v. 7, 1964, pp. 715-718.
- John B. Gibson, Optimal rational starting approximations, J. Approximation Theory 12 (1974), 182–198. MR 381244, DOI https://doi.org/10.1016/0021-9045%2874%2990047-1
- E. H. Kaufman Jr. and G. D. Taylor, Uniform rational approximation of functions of several variables, Internat. J. Numer. Methods Engrg. 9 (1975), no. 2, 297–323. MR 454460, DOI https://doi.org/10.1002/nme.1620090204
- Richard F. King and David L. Phillips, The logarithmic error and Newton’s method for the square root, Comm. ACM 12 (1969), 87–88. MR 0285109, DOI https://doi.org/10.1145/362848.362861
- Wendy James and P. Jarratt, The generation of square roots on a computer with rapid multiplication compared with division, Math. Comp. 19 (1965), 497–500. MR 178587, DOI https://doi.org/10.1090/S0025-5718-1965-0178587-3
- G. Meinardus and G. D. Taylor, Optimal starting approximations for iterative schemes, J. Approximation Theory 9 (1973), 1–19. MR 422964, DOI https://doi.org/10.1016/0021-9045%2873%2990108-1
- David G. Moursund, Optimal starting values for Newton-Raphson calculation of $\surd x$, Comm. ACM 10 (1967), 430–432. MR 0240952, DOI https://doi.org/10.1145/363427.363454
- D. G. Moursund and G. D. Taylor, Optimal starting values for the Newton-Raphson calculation of inverses of certain functions, SIAM J. Numer. Anal. 5 (1968), 138–150. MR 225481, DOI https://doi.org/10.1137/0705011
- Ichizo Ninomiya, Best rational starting approximations and improved Newton iteration for the square root, Math. Comp. 24 (1970), 391–404. MR 273809, DOI https://doi.org/10.1090/S0025-5718-1970-0273809-4
- David L. Phillips, Generalized logarithmic error and Newton’s method for the $m$th root, Math. Comp. 24 (1970), 383–389. MR 283982, DOI https://doi.org/10.1090/S0025-5718-1970-0283982-X
- I. F. Ganžela and C. T. Fike, Sterbenz, P. H, Math. Comp. 23 (1969), 313–318. MR 245199, DOI https://doi.org/10.1090/S0025-5718-1969-0245199-6
- G. D. Taylor, Optimal starting approximations for Newton’s method, J. Approximation Theory 3 (1970), 156–163. MR 263234, DOI https://doi.org/10.1016/0021-9045%2870%2990024-9 J. S. WALTHER, A Unified Algorithm for Elementary Functions, Proc. AFIPS, Spring Joint Computer Conference, v. 38, 1971, pp. 379-385.
- M. Wayne Wilson, Optimal starting approximations for generating square root for slow or no divide, Comm. ACM 13 (1970), 559–560. MR 0285114, DOI https://doi.org/10.1145/362736.362750
Retrieve articles in Mathematics of Computation with MSC: 65H05, 41A30
Retrieve articles in all journals with MSC: 65H05, 41A30
Additional Information
Keywords:
Computation of roots,
optimal initialization of Newton’s method for computing roots,
best piecewise starting approximations
Article copyright:
© Copyright 1980
American Mathematical Society