On factoring a class of complex symmetric matrices without pivoting
HTML articles powered by AMS MathViewer
- by Steven M. Serbin PDF
- Math. Comp. 35 (1980), 1231-1234 Request permission
Abstract:
Let $\mathcal {A} = \mathcal {B} + i\mathcal {C}$ be a complex, symmetric $n \times n$ matrix with $\mathcal {B}$ and $\mathcal {C}$ each real, symmetric and positive definite. We show that the LINPACK diagonal pivoting decomposition ${\mathcal {U}^{ - 1}}\mathcal {A}{({\mathcal {U}^{ - 1}})^T} = \mathcal {D}$ proceeds without the necessity for pivoting. In particular, when $\mathcal {B}$ and $\mathcal {C}$ are band matrices, bandwidth is preserved.References
- James R. Bunch and Linda Kaufman, Some stable methods for calculating inertia and solving symmetric linear systems, Math. Comp. 31 (1977), no. 137, 163–179. MR 428694, DOI 10.1090/S0025-5718-1977-0428694-0
- James R. Bunch, Linda Kaufman, and Beresford N. Parlett, Hanbook Series Linear Algebra: Decomposition of a symmetric matrix, Numer. Math. 27 (1976), no. 1, 95–109. MR 1553989, DOI 10.1007/BF01399088 J. J. DONGARRA, C. B. MOLER, J. R. BUNCH & G. W. STEWART, LINPACK User’s Guide, SIAM, Philadelphia, Pa., 1979.
- Graeme Fairweather, A note on the efficient implementation of certain Padé methods for linear parabolic problems, BIT 18 (1978), no. 1, 106–109. MR 488820, DOI 10.1007/BF01947749
- Burton Wendroff, Theoretical numerical analysis, Academic Press, New York-London, 1966. MR 0196896
Additional Information
- © Copyright 1980 American Mathematical Society
- Journal: Math. Comp. 35 (1980), 1231-1234
- MSC: Primary 65F05
- DOI: https://doi.org/10.1090/S0025-5718-1980-0583500-9
- MathSciNet review: 583500