The exact degree of precision of generalized Gauss-Kronrod integration rules
HTML articles powered by AMS MathViewer
- by Philip Rabinowitz PDF
- Math. Comp. 35 (1980), 1275-1283 Request permission
Abstract:
It is shown that the Kronrod extension to the $n$-point Gauss integration rule, with respect to the weight function $(1 - x^2)^{\mu - 1/2}$, $0 < \mu \leqslant 2$, $\mu \ne 1$, is of exact precision $3n + 1$ for n even and $3n + 2$ for n odd. Similarly, for the $(n + 1)$-point Lobatto rule, with $-1/2< \mu \leqslant 1$, $\mu \ne 0$, the exact precision is $3n$ for $n$ odd and $3n + 1$ for n even.References
- Paola Baratella, An optimal extension of the Radau quadrature formula, Rend. Sem. Mat. Univ. Politec. Torino 37 (1979), no. 1, 147–158 (Italian, with English summary). MR 547779
- Pierre Barrucand, Intégration numérique, abscisse de Kronrod-Patterson et polynômes de Szegős, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A336–A338 (French). MR 267755
- Philip J. Davis and Philip Rabinowitz, Methods of numerical integration, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0448814 A. ERDÉLYI, W. MAGNUS, F. OBERHETTINGER & F. G. TRICOMI, Higher Transcendental Functions, Vol. II, McGraw-Hill, New York, 1953.
- D. K. Kahaner and G. Monegato, Nonexistence of extended Gauss-Laguerre and Gauss-Hermite quadrature rules with positive weights, Z. Angew. Math. Phys. 29 (1978), no. 6, 983–986 (English, with German summary). MR 523866, DOI 10.1007/BF01590820
- Th. Kaluza, Über die Koeffizienten reziproker Potenzreihen, Math. Z. 28 (1928), no. 1, 161–170 (German). MR 1544949, DOI 10.1007/BF01181155
- Aleksandr Semenovich Kronrod, Nodes and weights of quadrature formulas. Sixteen-place tables, Consultants Bureau, New York, 1965. Authorized translation from the Russian. MR 0183116
- C. A. Micchelli and T. J. Rivlin, Turán formulae and highest precision quadrature rules for Chebyshev coefficients, IBM J. Res. Develop. 16 (1972), 372–379. Mathematics of numerical computation. MR 334465, DOI 10.1147/rd.164.0372
- Giovanni Monegato, A note on extended Gaussian quadrature rules, Math. Comp. 30 (1976), no. 136, 812–817. MR 440878, DOI 10.1090/S0025-5718-1976-0440878-3
- Giovanni Monegato, Positivity of the weights of extended Gauss-Legendre quadrature rules, Math. Comp. 32 (1978), no. 141, 243–245. MR 458809, DOI 10.1090/S0025-5718-1978-0458809-0
- Giovanni Monegato, Some remarks on the construction of extended Gaussian quadrature rules, Math. Comp. 32 (1978), no. 141, 247–252. MR 458810, DOI 10.1090/S0025-5718-1978-0458810-7
- Giovanni Monegato, An overview of results and questions related to Kronrod schemes, Numerische Integration (Tagung, Math. Forschungsinst., Oberwolfach, 1978) Internat. Ser. Numer. Math., vol. 45, Birkhäuser, Basel-Boston, Mass., 1979, pp. 231–240. MR 561296
- T. N. L. Patterson, The optimum addition of points to quadrature formulae, Math. Comp. 22 (1968), 847–856; addendum, ibid. 22 (1968), no. 104, loose microfiche supp., C1–C11. MR 0242370, DOI 10.1090/S0025-5718-68-99866-9
- Robert Piessens and Maria Branders, A note on the optimal addition of abscissas to quadrature formulas of Gauss and Lobatto type, Math. Comp. 28 (1974), 135–139; supplement, ibid. 28 (1974), 344–347. MR 343552, DOI 10.1090/S0025-5718-1974-0343552-5
- Ju. S. Ramskiĭ, The improvement of a certain quadrature formula of Gauss type, Vyčisl. Prikl. Mat. (Kiev) 22 (1974), 143–146, 173 (Russian, with English summary). MR 0353638
- G. Szegö, Über gewisse orthogonale Polynome, die zu einer oszillierenden Belegungsfunktion gehören, Math. Ann. 110 (1935), no. 1, 501–513 (German). MR 1512952, DOI 10.1007/BF01448041 G. SZEGÖ, Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R.I., 1975;reprinted 1978.
Additional Information
- © Copyright 1980 American Mathematical Society
- Journal: Math. Comp. 35 (1980), 1275-1283
- MSC: Primary 65D30
- DOI: https://doi.org/10.1090/S0025-5718-1980-0583504-6
- MathSciNet review: 583504