On some trigonometric integrals
HTML articles powered by AMS MathViewer
- by Henry E. Fettis PDF
- Math. Comp. 35 (1980), 1325-1329 Request permission
Corrigendum: Math. Comp. 37 (1981), 605.
Corrigendum: Math. Comp. 37 (1981), 605.
Abstract:
Expressions are obtained for the integrals \[ I_\lambda ^{(p)} = \int _0^{\pi /2}{\left ( {\frac {{\sin \lambda \theta }}{{\sin \theta }}} \right )^p}d\theta ,\quad J_\lambda ^{(p)} = \int _0^{\pi /2}{\left ( {\frac {{1 - \cos \lambda \theta }}{{\sin \theta }}} \right )^p}d\theta \] for arbitrary real values of "$\lambda$", and $p = 1,2$.References
- I. S. GRADSHTEYN & I. M. RYZHIK, Table of Integrals, Series and Products, Academic Press, New York, 1965.
- Wilhelm Magnus and Fritz Oberhettinger, Formeln und Sätze für die speziellen Funktionen der mathematischen Physik, Springer-Verlag, Berlin, 1948 (German). 2d ed. MR 0025629 J. EDWARDS, A Treatise on the Integral Calculus, Vol. II, Macmillan, New York, 1922; reprinted by Chelsea, New York, 1977.
Additional Information
- © Copyright 1980 American Mathematical Society
- Journal: Math. Comp. 35 (1980), 1325-1329
- MSC: Primary 33A15; Secondary 33A10, 33A70
- DOI: https://doi.org/10.1090/S0025-5718-1980-0583510-1
- MathSciNet review: 583510