## Reciprocal polynomials having small measure

HTML articles powered by AMS MathViewer

- by David W. Boyd PDF
- Math. Comp.
**35**(1980), 1361-1377 Request permission

## Abstract:

The measure of a monic polynomial is the product of the absolute value of the roots which lie outside and on the unit circle. We describe an algorithm, based on the root-squaring method of Graeffe, for finding all polynomials with integer coefficients whose measures and degrees are smaller than some previously given bounds. Using the algorithm, we find all such polynomials of degree at most 16 whose measures are at most 1.3. We also find all polynomials of height 1 and degree at most 26 whose measures satisfy this bound. Our results lend some support to Lehmer’s conjecture. In particular, we find no noncyclotomic polynomial whose measure is less than the degree 10 example given by Lehmer in 1933.## References

- Erwin H. Bareiss,
*Resultant procedure and the mechanization of the Graeffe process*, J. Assoc. Comput. Mach.**7**(1960), 346–386. MR**119416**, DOI 10.1145/321043.321049 - David W. Boyd,
*Small Salem numbers*, Duke Math. J.**44**(1977), no. 2, 315–328. MR**453692** - David W. Boyd,
*Variations on a theme of Kronecker*, Canad. Math. Bull.**21**(1978), no. 2, 129–133. MR**485771**, DOI 10.4153/CMB-1978-023-x
D. W. BOYD, "Pisot numbers and the width of meromorphic functions." (Privately circulated manuscript.)
- E. Dobrowolski,
*On a question of Lehmer and the number of irreducible factors of a polynomial*, Acta Arith.**34**(1979), no. 4, 391–401. MR**543210**, DOI 10.4064/aa-34-4-391-401 - R. L. Duncan,
*Some inequalities for polynomials*, Amer. Math. Monthly**73**(1966), 58–59. MR**197690**, DOI 10.2307/2313925 - D. H. Lehmer,
*Factorization of certain cyclotomic functions*, Ann. of Math. (2)**34**(1933), no. 3, 461–479. MR**1503118**, DOI 10.2307/1968172 - Kurt Mahler,
*Lectures on transcendental numbers*, Lecture Notes in Mathematics, Vol. 546, Springer-Verlag, Berlin-New York, 1976. MR**0491533** - Morris Marden,
*Geometry of polynomials*, 2nd ed., Mathematical Surveys, No. 3, American Mathematical Society, Providence, R.I., 1966. MR**0225972** - D. S. Mitrinović,
*Analytic inequalities*, Die Grundlehren der mathematischen Wissenschaften, Band 165, Springer-Verlag, New York-Berlin, 1970. In cooperation with P. M. Vasić. MR**0274686** - A. M. Ostrowski,
*On an inequality of J. Vicente Gonçalves*, Univ. Lisboa Rev. Fac. Ci. A (2)**8**(1960), 115–119. MR**145049** - C. J. Smyth,
*On the product of the conjugates outside the unit circle of an algebraic integer*, Bull. London Math. Soc.**3**(1971), 169–175. MR**289451**, DOI 10.1112/blms/3.2.169 - C. L. Stewart,
*On a theorem of Kronecker and a related question of Lehmer*, Séminaire de Théorie des Nombres 1977–1978, CNRS, Talence, 1978, pp. Exp. No. 7, 11. MR**550267**

## Additional Information

- © Copyright 1980 American Mathematical Society
- Journal: Math. Comp.
**35**(1980), 1361-1377 - MSC: Primary 30C15; Secondary 12-04, 26C05, 65D20
- DOI: https://doi.org/10.1090/S0025-5718-1980-0583514-9
- MathSciNet review: 583514