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The Determination of all Imaginary, Quartic,

Abelian Number Fields With Class Number 1

By Bennett Setzer

Abstract.   In this paper, it is proved that there are just seven imaginary number fields,

quartic cyclic over the rational field, and having class number 1.   These are the quartic,

cyclic imaginary subfields of the cyclotomic fields generated by the /th roots of unity,

where /is 16 or is a prime less than 100.   This completes the list of imaginary, quartic,

abelian number fields with class number 1.   There are 54 such fields, with maximal con-

ductor 67.163.

In [5], Uchida proves the following about imaginary, quartic abelian number fields

of class number 1 :

(A) If the field is bicyclic, there are 47 such fields, (with maximal conductor

67.163) with possibly one more.

(B) If the field is cyclic, the conductor must be less than 50000.

The existence of another field in (A), depends, however, on there being an imaginary

quadratic field with class number 2 and discriminant < -427.  Stark [4], and

Montgomery-Weinberger [3], have shown there is no such quadratic field, so Uchida's

list of bicyclic fields is complete.   Brown and Parry [1], using the results of Stark,

have also given a complete list of imaginary bicyclic quartic fields of class number 1.

This paper describes the computations that were carried out to show that there

are just 7 imaginary, quartic cyclic number fields with class number 1.

Theorem .   There are exactly 54 imaginary, quartic, abelian number fields with

class number 1 :

(a) 47 bicyclic fields, with maximal conductor 67.163; and

■ (b) 7 cyclic fields, with maximal conductor 61.

As will be seen below, the cyclic fields are contained in the cyclotomic fields

Í216, S25, ß13, ^29' ^37 > ̂ 53' ar|d ^6i-  (^v 's tne ^e'^ generated by the Nth

roots of unity.)   Each is the unique imaginary, cyclic, quartic subfield of the corre-

sponding cyclotomic field.

The theory of the relative class number developed by Hasse [2], was used to

eliminate all possible fields up to the 50000 limit, except for the above seven.  We

describe the details relevant to the present problem.   Let k be an imaginary, cyclic

quartic field.  There is, associated to k, a pair of quartic Dirichlet characters \p and \p

of conductor / = conductor of k.  These are, essentially, the characters of order 4 on

Gal(iL-/ß) 5 (Z//)*, which are orthogonal to Gal{Q.f/k).  Since k is totally complex,
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0(-l) = i//(-l) = -1.  Now, also, k contains a unique real quadratic subfield, kx.  Let

h = class number of k, hx — class number of kx.  Then h = hxh*, where h* is an in-

teger, the relative class number.  Hasse (p. 79 of [2] ), gives a formula for h*, which in

the present case reduces to

h* = w©(0)©(0),

where w = number of roots of unity in k and

L¡ x = \

(Note that it is easy to verify that a fundamental unit of kx is also a fundamental unit

of k, so the factor ß in Hasse's original formula is 1 in the present case.)

The search for k of class number 1 was first reduced by the following

Proposition 1. If h = 1, then /= 16 or fis a prime, f= 5 (mod 8).

Proof.   Since h > h* > 20(0)0(0), if h is to be 1, then 0(0) cannot be inte-

gral.   But, 0(0) is integral if /is divisible by two distinct primes; Section 28 of [2].

If / = pe is a power of an odd prime, then 0(0) is integral if e > 1 ; Satz 32, p. 93 of

[2].  For there to be a quartic character (mod /), / an odd prime, we must have

/= 1 (mod 4).  If the character is to be odd, then /^ 1 (mod 8).  Finally, if / = 2e,

then/= 16, since the only odd quartic characters (mod 2e) have conductor 16.

In each case / = 16,/a prime = 5 (mod 8), the field A: is a uniquely determined

subfield of Í2p and the character pair is the unique pair of odd, quartic characters

(mod/).   For/= 16, kx = ß[v_~] so hx = 1.   Also, w = 2.  It is easily checked that

0(0)0(0) = H.  So, in the case /= 16, h = 1.  Now assume that /is a prime = 5

(mod 8).  The computation of 0(0) can be done by counting quartic residues (mod /).

Proposition 2. Let f be a prime = 5 (mod 8) and 0 a quartic character

(mod /), where 0(2) = i, i2 = -1.  Then

0(0) = ((3(a0 - 50) + (ß0 - y0)) + ((„0 - 50) - 3(ß0 - 70))i)/10,

and

0(0)0(0) = ((a0 - 50)2 + 0Jo - 70)2)/10,

where a0 is the number of quartic residues (mod /) contained in the interval

[1, (/- l)/4];iV in [(/+ 3)/4, (/- l)/2]; 70> in [(/+ l)/2, (3/ - 3)/4] ; 50, in

[(3/+l)/4,(/-l)].

Note that, since /= 5 (mod 8) is assumed, 2 is not a quadratic residue (mod/),

so(0(2))2 =-1.

Note also that the definition of 0(0) and Proposition 2 give 0(0) as members

of the Gaussian field (ß[/]) with denominators 2/and 10, respectively.   If/> 5, the

true denominator is at worst 2, so 3(a0 - 50) + (ß0 - t0) - 0 (mod 5).   Also, a0 +

|30 + 70 + 50 = (/- l)/4 = 1 (mod 2), so 0(0) and 0(0) • 0(0) have exact denomi-

nator 2.  This also follows from Satz 32 of [2].
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Proof. We first derive the formula

CT-D/2
0(0) = 0(2)    £    0(x)/(40(2) - 2).

x=l

tr-o/2 /-i
Gx =    £    x0(x),      G2=      £       **(*)•

x = l x=(/+l)/2

(/-D/2
20(2)0,   -     X    2x0(2x),

x=l

/-l (/-l)/2

20(2)G2 =      X      (2x-/)0(2x-/)-/0(2)    £    0(x).
x=(/+l)/2 x = l

Since /is odd,

Cf-i)/2
20(2)(G, + G2) = GX+G2- /0(2)    £    0(x).

x = l

in

As 0(0) = {Gx + G2)/{-2f), (1) is proved.

Now, the subgroup of quartic residues (mod/) is index 4 in {Z/fZ)*, with coset

representatives 1,2, A, 8.  Let a; be the number of elements in 2'-coset contained i

the interval [1, (/- l)/4], for 0 </' < 3.  (a0 is the same as above.)  Define /3;-, y,, 5;-

similarly for the successive quarter intervals of [1,/- 1].   Then

CT-i)/2
(2) £     4,(x) = (a0+ß0)-(a2+ß2) + (al+ßl)i-(a3+ß3)i.

x=l

Since -1 is a quadratic, but not quartic, residue (mod /), multiplication by -1

gives the following relations:

a0 =S2,      a, =ô3,      a2 =ô0,      a3 =«,,

(3)

ßo = 72,      ßi = 73>      ß2 = 70>      ß3 = 7,-

Also, the quartic residues in [1, (/- l)/4] and [if + l)/2, (3/- 3)/4], when multiplied

by 2, map one to one onto the 2-coset elements in [1, if- l)/2].  Thus a0 + 70 =

ax + J3j.   Similarly:

«o+To=ai +ßi> 0o+6o=7i+6i.

(4) «i +7, =«2+/32, ßx+ox=y2+o2,

a2 + 72 = a3 + ß3, ß2+o2=73+S3,

«3 + 73 = % + 0o. 03+S3=7o+5o-
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(3) and (4) imply

ao =0i =73 =°2'      a2 =^3 =7i =80>

(5)
ttl   =^2  =70 =ô3'        a3  =^0  =72  =ôl-

Combining (5), (2) and (1), then rationalizing the denominator (40(2) - 2 =

Ai - 2), proves the proposition. D

A program was written to compute 0(0) for prime/= 5 (mod 8), /< 50021.

The computation was done on an IBM 370.   A machine language subroutine was used

to compute, for each / x4 (mod /) for 1 < x < (/- l)/2.  The count of a0, ß0,y0,

§0 was made from this.  The whole computation took less than 10 minutes of CPU

time.   For h = 1, 0(0) ■ 0(0) must be lA or less.   This occurred only for / = 5 (for

which 0(0)0(0) = 1/10) and/= 13, 29, 37, 53, 61 (for which 0(0)0(0) = W).

Proof of Theorem.   By Uchida's result, it only remains to show that the seven

cyclic fields do have class number 1. The case/= 16 was considered before. For/= 5,

k = n5 and A:, =Q[\fi]. So,w = 10,/i, = 1 and 0(0)0(0) = 1/10, that is, A = 1. In

the remaining five cases, kx = Q[\ff] and /j, = 1. Also, w = 2,0(0)0(0) = Vi so h = 1

in these cases. D

Generating equations for these fields can be obtained by observing that k =

k. [\/)t] , where n = sffe {~\/2e for/= 16) and e > 0 is a fundamental unit for kx

(norm of e is -1, necessarily). Then one has

/= 5, x4 + 5x2 + 5 = 0,

/= 13, x4 + 13x2 + 13 =0,

/= 29, x4 + 29x2 + 29 = 0,

/= 37, x4 + 74x2 + 37 = 0,

/= 53, x4 + 53x2 + 53 =0,

/= 61, x4 + 305x2 + 61 =0,

/= 16, x4 + 4x2 + 2 =0.

The computer resources used in this paper were provided by the Computer

Center at the University of Illinois, Chicago Circle.
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