Some very large primes of the form $k\cdot 2^{m}+1$

Authors:
G. V. Cormack and H. C. Williams

Journal:
Math. Comp. **35** (1980), 1419-1421

MSC:
Primary 10A25

DOI:
https://doi.org/10.1090/S0025-5718-1980-0583519-8

Erratum:
Math. Comp. **38** (1982), 335.

MathSciNet review:
583519

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Several large primes of the form $k \cdot {2^m} + 1$ with $3 \leqslant k \leqslant 29$ and $m > 1500$ are tabulated and four new factors of Fermat numbers are presented.

- Robert Baillie,
*New primes of the form $k\cdot 2^{n}+1$*, Math. Comp.**33**(1979), no. 148, 1333โ1336. MR**537979**, DOI https://doi.org/10.1090/S0025-5718-1979-0537979-0 - Gary B. Gostin,
*A factor of $F_{17}$*, Math. Comp.**35**(1980), no. 151, 975โ976. MR**572869**, DOI https://doi.org/10.1090/S0025-5718-1980-0572869-7 - Donald E. Knuth,
*The art of computer programming*, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. Volume 1: Fundamental algorithms; Addison-Wesley Series in Computer Science and Information Processing. MR**0378456** - Donald E. Knuth,
*The art of computer programming*, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. Volume 1: Fundamental algorithms; Addison-Wesley Series in Computer Science and Information Processing. MR**0378456** - G. Matthew and H. C. Williams,
*Some new primes of the form $k\cdot 2^{n}+1$*, Math. Comp.**31**(1977), no. 139, 797โ798. MR**439719**, DOI https://doi.org/10.1090/S0025-5718-1977-0439719-0 - Raphael M. Robinson,
*A report on primes of the form $k\cdot 2^{n}+1$ and on factors of Fermat numbers*, Proc. Amer. Math. Soc.**9**(1958), 673โ681. MR**96614**, DOI https://doi.org/10.1090/S0002-9939-1958-0096614-7
A. O. L. ATKIN & N. W. RICKERT, "Some factors of Fermat numbers,"

*Abstracts A mer. Math. Soc.*, v. 1, 1980, p. 211.

Retrieve articles in *Mathematics of Computation*
with MSC:
10A25

Retrieve articles in all journals with MSC: 10A25

Additional Information

Article copyright:
© Copyright 1980
American Mathematical Society