## Some very large primes of the form $k\cdot 2^{m}+1$

HTML articles powered by AMS MathViewer

- by G. V. Cormack and H. C. Williams PDF
- Math. Comp.
**35**(1980), 1419-1421 Request permission

Erratum: Math. Comp.

**38**(1982), 335.

## Abstract:

Several large primes of the form $k \cdot {2^m} + 1$ with $3 \leqslant k \leqslant 29$ and $m > 1500$ are tabulated and four new factors of Fermat numbers are presented.## References

- Robert Baillie,
*New primes of the form $k\cdot 2^{n}+1$*, Math. Comp.**33**(1979), no.ย 148, 1333โ1336. MR**537979**, DOI 10.1090/S0025-5718-1979-0537979-0 - Gary B. Gostin,
*A factor of $F_{17}$*, Math. Comp.**35**(1980), no.ย 151, 975โ976. MR**572869**, DOI 10.1090/S0025-5718-1980-0572869-7 - Donald E. Knuth,
*The art of computer programming*, 2nd ed., Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. Volume 1: Fundamental algorithms. MR**0378456** - Donald E. Knuth,
*The art of computer programming*, 2nd ed., Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. Volume 1: Fundamental algorithms. MR**0378456** - G. Matthew and H. C. Williams,
*Some new primes of the form $k\cdot 2^{n}+1$*, Math. Comp.**31**(1977), no.ย 139, 797โ798. MR**439719**, DOI 10.1090/S0025-5718-1977-0439719-0 - Raphael M. Robinson,
*A report on primes of the form $k\cdot 2^{n}+1$ and on factors of Fermat numbers*, Proc. Amer. Math. Soc.**9**(1958), 673โ681. MR**96614**, DOI 10.1090/S0002-9939-1958-0096614-7
A. O. L. ATKIN & N. W. RICKERT, "Some factors of Fermat numbers,"

*Abstracts A mer. Math. Soc.*, v. 1, 1980, p. 211.

## Additional Information

- © Copyright 1980 American Mathematical Society
- Journal: Math. Comp.
**35**(1980), 1419-1421 - MSC: Primary 10A25
- DOI: https://doi.org/10.1090/S0025-5718-1980-0583519-8
- MathSciNet review: 583519