An optimal order process for solving finite element equations
HTML articles powered by AMS MathViewer
- by Randolph E. Bank and Todd Dupont PDF
- Math. Comp. 36 (1981), 35-51 Request permission
Abstract:
A k-level iterative procedure for solving the algebraic equations which arise from the finite element approximation of elliptic boundary value problems is presented and analyzed. The work estimate for this procedure is proportional to the number of unknowns, an optimal order result. General geometry is permitted for the underlying domain, but the shape plays a role in the rate of convergence through elliptic regularity. Finally, a short discussion of the use of this method for parabolic problems is presented.References
-
N. S. Bakhvalov, "On the convergence of a relaxation method with natural constraints on the elliptic operator," Ž. Vyčisl. Mat.i Mat. Fiz., v. 6, 1966, pp. 861-885.
R. E. Bank & Todd Dupont, "Analysis of a two-level scheme for solving finite element equations," Numer. Math. (Submitted.)
- James H. Bramble, Discrete methods for parabolic equations with time-dependent coefficients, Numerical methods for partial differential equations (Proc. Adv. Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1978) Publ. Math. Res. Center Univ. Wisconsin, vol. 42, Academic Press, New York-London, 1979, pp. 41–52. MR 558215
- J. H. Bramble and S. R. Hilbert, Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. Math. 16 (1970/71), 362–369. MR 290524, DOI 10.1007/BF02165007
- James H. Bramble and Miloš Zlámal, Triangular elements in the finite element method, Math. Comp. 24 (1970), 809–820. MR 282540, DOI 10.1090/S0025-5718-1970-0282540-0
- Achi Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp. 31 (1977), no. 138, 333–390. MR 431719, DOI 10.1090/S0025-5718-1977-0431719-X
- Jim Douglas Jr., Todd Dupont, and Richard E. Ewing, Incomplete iteration for time-stepping a Galerkin method for a quasilinear parabolic problem, SIAM J. Numer. Anal. 16 (1979), no. 3, 503–522. MR 530483, DOI 10.1137/0716039
- Jim Douglas Jr. and Todd Dupont, Galerkin methods for parabolic equations, SIAM J. Numer. Anal. 7 (1970), 575–626. MR 277126, DOI 10.1137/0707048
- Jim Douglas Jr., Effective time-stepping methods for the numerical solution of nonlinear parabolic problems, Mathematics of finite elements and applications, III (Proc. Third MAFELAP Conf., Brunel Univ., Uxbridge, 1978) Academic Press, London-New York, 1979, pp. 289–304. MR 559305
- Todd Dupont and Ridgway Scott, Polynomial approximation of functions in Sobolev spaces, Math. Comp. 34 (1980), no. 150, 441–463. MR 559195, DOI 10.1090/S0025-5718-1980-0559195-7
- R. P. Fedorenko, A relaxation method of solution of elliptic difference equations, Ž. Vyčisl. Mat i Mat. Fiz. 1 (1961), 922–927 (Russian). MR 137314
- R. P. Fedorenko, On the speed of convergence of an iteration process, Ž. Vyčisl. Mat i Mat. Fiz. 4 (1964), 559–564 (Russian). MR 182163
- Pierre Grisvard, Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain, Numerical solution of partial differential equations, III (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md., 1975) Academic Press, New York, 1976, pp. 207–274. MR 0466912 W. Hackbusch, On the Convergence of a Multi-Grid Iteration Applied to Finite Element Equations, Report 77-8, Universität zu Köln, July 1977. W. Hackbusch, On the Computation of Approximate Eigenvalues and Eigenfunctions of Elliptic Operators by Means of a Multi-Grid Method, Report 77-10, Universität zu Köln, August 1977.
- Pierre Jamet, Estimations d’erreur pour des éléments finis droits presque dégénérés, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. 10 (1976), no. R-1, 43–60 (French, with Loose English summary). MR 0455282
- R. A. Nicolaides, On multiple grid and related techniques for solving discrete elliptic systems, J. Comput. Phys. 19 (1975), no. 4, 418–431. MR 413541, DOI 10.1016/0021-9991(75)90072-8
- R. A. Nicolaides, On the $l^{2}$ convergence of an algorithm for solving finite element equations, Math. Comp. 31 (1977), no. 140, 892–906. MR 488722, DOI 10.1090/S0025-5718-1977-0488722-3
- Donald J. Rose and Gregory F. Whitten, A recursive analysis of dissection strategies, Sparse matrix computations (Proc. Sympos., Argonne Nat. Lab., Lemont, Ill., 1975) Academic Press, New York, 1976, pp. 59–83. MR 0521077
- Ridgway Scott, Interpolated boundary conditions in the finite element method, SIAM J. Numer. Anal. 12 (1975), 404–427. MR 386304, DOI 10.1137/0712032
- Gilbert Strang and George J. Fix, An analysis of the finite element method, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973. MR 0443377
- Vidar Thomée, Negative norm estimates and superconvergence in Galerkin methods for parabolic problems, Math. Comp. 34 (1980), no. 149, 93–113. MR 551292, DOI 10.1090/S0025-5718-1980-0551292-5
Additional Information
- © Copyright 1981 American Mathematical Society
- Journal: Math. Comp. 36 (1981), 35-51
- MSC: Primary 65N30; Secondary 65F10
- DOI: https://doi.org/10.1090/S0025-5718-1981-0595040-2
- MathSciNet review: 595040