On Fermat’s quotient, base two
HTML articles powered by AMS MathViewer
- by D. H. Lehmer PDF
- Math. Comp. 36 (1981), 289-290 Request permission
Abstract:
This paper extends the search for solutions of the congruence \[ {2^{p - 1}} - 1 \equiv 0\quad \pmod {p^2}\] to the limit $p < 6 \cdot {10^9}$. No solution, except the well-known $p = 1093$ and $p = 3511$, was found.References
- J. Brillhart, J. Tonascia, and P. Weinberger, On the Fermat quotient, Computers in number theory (Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford, 1969) Academic Press, London, 1971, pp. 213–222. MR 0314736 A. Wieferich, "Zum letzen Fermatschen Theorem," J.für Math., v. 136, 1909, pp. 293-302.
Additional Information
- © Copyright 1981 American Mathematical Society
- Journal: Math. Comp. 36 (1981), 289-290
- MSC: Primary 10-04
- DOI: https://doi.org/10.1090/S0025-5718-1981-0595064-5
- MathSciNet review: 595064