Eigenvalue approximation by mixed and hybrid methods
HTML articles powered by AMS MathViewer
- by B. Mercier, J. Osborn, J. Rappaz and P.-A. Raviart PDF
- Math. Comp. 36 (1981), 427-453 Request permission
Abstract:
Rate of convergence estimates are derived fro the approximation of eigenvalues and eigenvectors by mixed and hybrid methods. Several closely related abstract results on spectral approximation are proved. These results are then applied to a variety of finite element methods of mixed and hybrid type: a mixed method for 2nd order problems, mixed methods for 4th order problems, a hybrid method for 2nd order problems, and two mixed methods for the Stokes eigenvalue problem.References
- Ivo Babuška, Error-bounds for finite element method, Numer. Math. 16 (1970/71), 322–333. MR 288971, DOI 10.1007/BF02165003 I. Babuška & A. Aziz, "Survey lectures on the mathematical foundations of the finite element method" in The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations (A. K. Aziz, Ed.), Academic Press, New York, 1973, pp. 5-359.
- I. Babuška and J. E. Osborn, Numerical treatment of eigenvalue problems for differential equations with discontinuous coefficients, Math. Comp. 32 (1978), no. 144, 991–1023. MR 501962, DOI 10.1090/S0025-5718-1978-0501962-0
- J. H. Bramble and J. E. Osborn, Rate of convergence estimates for nonselfadjoint eigenvalue approximations, Math. Comp. 27 (1973), 525–549. MR 366029, DOI 10.1090/S0025-5718-1973-0366029-9
- I. Babuška, J. Osborn, and J. Pitkäranta, Analysis of mixed methods using mesh dependent norms, Math. Comp. 35 (1980), no. 152, 1039–1062. MR 583486, DOI 10.1090/S0025-5718-1980-0583486-7
- F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8 (1974), no. R-2, 129–151 (English, with French summary). MR 365287
- F. Brezzi, Sur la méthode des éléments finis hybrides pour le problème biharmonique, Numer. Math. 24 (1975), no. 2, 103–131 (French). MR 391538, DOI 10.1007/BF01400961
- F. Brezzi and P.-A. Raviart, Mixed finite element methods for 4th order elliptic equations, Topics in numerical analysis, III (Proc. Roy. Irish Acad. Conf., Trinity Coll., Dublin, 1976) Academic Press, London, 1977, pp. 33–56. MR 0657975
- C. Canuto, Eigenvalue approximations by mixed methods, RAIRO Anal. Numér. 12 (1978), no. 1, 27–50, iii (English, with French summary). MR 488712, DOI 10.1051/m2an/1978120100271
- P. G. Ciarlet and P.-A. Raviart, A mixed finite element method for the biharmonic equation, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974) Publication No. 33, Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 125–145. MR 0657977
- M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 33–75. MR 343661
- Jean Descloux, Nabil Nassif, and Jacques Rappaz, On spectral approximation. I. The problem of convergence, RAIRO Anal. Numér. 12 (1978), no. 2, 97–112, iii (English, with French summary). MR 483400, DOI 10.1051/m2an/1978120200971 J. Descloux, N. Nassif & J. Rappaz, Various Results on Spectral Approximation, Rapport du Dept. de Math. de l’Ecole Polytechnique Fédérale de Lausanne, Suisse, 1977.
- Richard S. Falk, Approximation of the biharmonic equation by a mixed finite element method, SIAM J. Numer. Anal. 15 (1978), no. 3, 556–567. MR 478665, DOI 10.1137/0715036
- R. S. Falk and J. E. Osborn, Error estimates for mixed methods, RAIRO Anal. Numér. 14 (1980), no. 3, 249–277 (English, with French summary). MR 592753
- George J. Fix, Eigenvalue approximation by the finite element method, Advances in Math. 10 (1973), 300–316. MR 341900, DOI 10.1016/0001-8708(73)90113-8
- Michel Fortin, An analysis of the convergence of mixed finite element methods, RAIRO Anal. Numér. 11 (1977), no. 4, 341–354, iii (English, with French summary). MR 464543, DOI 10.1051/m2an/1977110403411
- V. Girault and P.-A. Raviart, An analysis of a mixed finite element method for the Navier-Stokes equations, Numer. Math. 33 (1979), no. 3, 235–271. MR 553589, DOI 10.1007/BF01398643
- R. Glowinski, Approximations externes, par éléments finis de Lagrange d’ordre un et deux, du problème de Dirichlet pour l’opérateur biharmonique. Méthode itérative de résolution des problèmes approchés, Topics in numerical analysis (Proc. Roy. Irish Acad. Conf., University Coll., Dublin, 1972) Academic Press, London, 1973, pp. 123–171 (French). MR 0351120 L. Herrmann, "Finite element bending analysis for plates," J. Eng. Mech., Div. ASCE EM5, v. 93, 1967, pp. 49-83. L. Herrmann, "A bending analysis for plates," Proc. Conf. on Matrix Methods in Structural Mechanics, AFFDL-TR-66-88, pp. 577-604.
- Kazuo Ishihara, Convergence of the finite element method applied to the eigenvalue problem $\Delta u+\lambda u=0$, Publ. Res. Inst. Math. Sci. 13 (1977/78), no. 1, 47–60. MR 0455475, DOI 10.2977/prims/1195190100
- Kazuo Ishihara, The buckling of plates by the mixed finite element method, Mem. Numer. Math. 5 (1978), 73–82. MR 483544
- Kazuo Ishihara, A mixed finite element method for the biharmonic eigenvalue problems of plate bending, Publ. Res. Inst. Math. Sci. 14 (1978), no. 2, 399–414. MR 509196, DOI 10.2977/prims/1195189071
- Claes Johnson, On the convergence of a mixed finite-element method for plate bending problems, Numer. Math. 21 (1973), 43–62. MR 388807, DOI 10.1007/BF01436186
- William G. Kolata, Approximation in variationally posed eigenvalue problems, Numer. Math. 29 (1977/78), no. 2, 159–171. MR 482047, DOI 10.1007/BF01390335
- B. Mercier, Numerical solution of the biharmonic problem by mixed finite elements of class $C^{0}$, Boll. Un. Mat. Ital. (4) 10 (1974), 133–149 (English, with Italian summary). MR 0378442 B. Mercier & J. Rappaz, Eigenvalue approximation via non-conforming and hybrid finite element methods, Rapport du Centre de Mathématiques Appliquées, Ecole Polytechnique, Palaiseau, France, 1978.
- Tetsuhiko Miyoshi, A finite element method for the solutions of fourth order partial differential equations, Kumamoto J. Sci. (Math.) 9 (1972/73), 87–116. MR 0386298 S. Nemat-Nasser, "General variational methods for elastic waves in composites," J. Elasticity, v. 2, 1972, pp. 73-90. S. Nemat-Nasser, "Harmonic waves in layered composites," J. Appl. Mech., v. 39, 1972, pp. 850-852. S. Nemat-Nasser, General Variational Principles in Nonlinear and Linear Elasticity with Applications. Mechanics Today 1, Pergamon Press, New York, 1974, pp. 214-261. T. Oden, "Some contributions to the mathematical theory of mixed finite element approximations," in Theory and Practice in Finite Element Structural Analysis, Univ. of Tokyo Press, Tokyo, 1973, pp. 3-23. T. Oden, "Some contributions to the mathematical theory of mixed finite element approximations," in Theory and Practice in Finite Element Structural Analysis, Univ. of Tokyo Press, Tokyo, 1973, pp. 3-23.
- J. T. Oden and J. N. Reddy, On mixed finite element approximations, SIAM J. Numer. Anal. 13 (1976), no. 3, 393–404. MR 413551, DOI 10.1137/0713035
- John E. Osborn, Spectral approximation for compact operators, Math. Comput. 29 (1975), 712–725. MR 0383117, DOI 10.1090/S0025-5718-1975-0383117-3
- John E. Osborn, Approximation of the eigenvalues of a nonselfadjoint operator arising in the study of the stability of stationary solutions of the Navier-Stokes equations, SIAM J. Numer. Anal. 13 (1976), no. 2, 185–197. MR 447842, DOI 10.1137/0713019
- R. Vichnevetsky and R. S. Stepleman (eds.), Advances in computer methods for partial differential equations. III, International Association for Mathematics and Computers in Simulation (IMACS), New Brunswick, N.J., 1979. MR 603451
- Rolf Rannacher, On nonconforming and mixed finite element method for plate bending problems. The linear case, RAIRO Anal. Numér. 13 (1979), no. 4, 369–387 (English, with French summary). MR 555385, DOI 10.1051/m2an/1979130403691
- P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977, pp. 292–315. MR 0483555
- P.-A. Raviart and J. M. Thomas, Primal hybrid finite element methods for $2$nd order elliptic equations, Math. Comp. 31 (1977), no. 138, 391–413. MR 431752, DOI 10.1090/S0025-5718-1977-0431752-8
- Reinhard Scholz, Approximation von Sattelpunkten mit finiten Elementen, Finite Elemente (Tagung, Univ. Bonn, Bonn, 1975) Bonn. Math. Schrift., No. 89, Inst. Angew. Math., Univ. Bonn, Bonn, 1976, pp. 53–66 (German, with English summary). MR 0471377
- Reinhard Scholz, A mixed method for 4th order problems using linear finite elements, RAIRO Anal. Numér. 12 (1978), no. 1, 85–90, iii (English, with French summary). MR 483557, DOI 10.1051/m2an/1978120100851 J. M. Thomas, Sur l’Analyse Numérique des Méthodes d’Eléments Finis Hybrides et Mixtes, Thesis, Univ. P & M Curie, Paris, 1977.
- J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965. MR 0184422
Additional Information
- © Copyright 1981 American Mathematical Society
- Journal: Math. Comp. 36 (1981), 427-453
- MSC: Primary 65N25; Secondary 65N15, 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1981-0606505-9
- MathSciNet review: 606505