## A mesh refinement method for $Ax=\lambda Bx$

HTML articles powered by AMS MathViewer

- by Stephen F. McCormick PDF
- Math. Comp.
**36**(1981), 485-498 Request permission

## Abstract:

The aim of this paper is to introduce a simple but efficient mesh refinement strategy for use with inverse iteration for finding one or a few solutions of an ordinary or partial differential eigenproblem of the form $Ax = \lambda Bx$. The focus is upon the case where*A*and

*B*are symmetric and

*B*is positive definite, although the approaches have a very broad application. A discussion of the combined use of mesh refinement and a correction scheme multigrid technique is also provided. The methods are illustrated by numerical results from experiments with two-point boundary value problems.

## References

- E. L. Allgower and S. F. McCormick,
*Newton’s method with mesh refinements for numerical solution of nonlinear two-point boundary value problems*, Numer. Math.**29**(1977/78), no. 3, 237–260. MR**468200**, DOI 10.1007/BF01389210
E. L. Allgower, S. F. McCormick & D. V. Pryor, "A general mesh independence principle for Newton’s method applied to second order boundary value problems," - Kendall Atkinson,
*Convergence rates for approximate eigenvalues of compact integral operators*, SIAM J. Numer. Anal.**12**(1975), 213–222. MR**438746**, DOI 10.1137/0712020
L. C. Bernard & F. J. Helton, - Achi Brandt,
*Multi-level adaptive solutions to boundary-value problems*, Math. Comp.**31**(1977), no. 138, 333–390. MR**431719**, DOI 10.1090/S0025-5718-1977-0431719-X - W. Hackbusch,
*On the computation of approximate eigenvalues and eigenfunctions of elliptic operators by means of a multi-grid method*, SIAM J. Numer. Anal.**16**(1979), no. 2, 201–215. MR**526484**, DOI 10.1137/0716015
D. E. Longsine & S. F. McCormick, "Simultaneous Rayleigh quotient optimization methods for $Ax = \lambda Bx$." (Submitted.)
- S. F. McCormick,
*A revised mesh refinement strategy for Newton’s method applied to nonlinear two-point boundary value problems*, Numerical treatment of differential equations in applications (Proc. Meeting, Math. Res. Center, Oberwolfach, 1977) Lecture Notes in Math., vol. 679, Springer, Berlin, 1978, pp. 15–23. MR**515566** - B. N. Parlett and D. S. Scott,
*The Lanczos algorithm with selective orthogonalization*, Math. Comp.**33**(1979), no. 145, 217–238. MR**514820**, DOI 10.1090/S0025-5718-1979-0514820-3 - H. R. Schwarz,
*Two algorithms for treating $A\chi =\lambda B\chi$*, Comput. Methods Appl. Mech. Engrg.**12**(1977), no. 2, 181–199. MR**494878**, DOI 10.1016/0045-7825(77)90011-1 - G. W. Stewart,
*A bibliographical tour of the large, sparse generalized eigenvalue problem*, Sparse matrix computations (Proc. Sympos., Argonne Nat. Lab., Lemont, Ill., 1975) Academic Press, New York, 1976, pp. 113–130. MR**0455324**
R. Underwood, - Eugene L. Wachspress,
*Iterative solution of elliptic systems, and applications to the neutron diffusion equations of reactor physics*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966. MR**0234649**

*J. Numer. Func. Anal. Opt.*(To appear).

*Computation of the Ideal Linearized Magneto Hydrodynamic (MHD) Spectrum in Toroidal Axisymmetry*, General Atomic report no. GA-A15257, La Jolla, Calif., January 1979.

*An Iterative Block Lanczos Method for the Solution of Large Sparse Symmetric Eigenproblems*, Ph.D. Thesis, Stanford University, STAN-CS-75-496, 1975.

## Additional Information

- © Copyright 1981 American Mathematical Society
- Journal: Math. Comp.
**36**(1981), 485-498 - MSC: Primary 65N25; Secondary 65F15, 65L15, 65R99
- DOI: https://doi.org/10.1090/S0025-5718-1981-0606508-4
- MathSciNet review: 606508