The finite element method with Lagrange multipliers for domains with corners

Author:
Juhani Pitkäranta

Journal:
Math. Comp. **37** (1981), 13-30

MSC:
Primary 65N30

DOI:
https://doi.org/10.1090/S0025-5718-1981-0616357-9

MathSciNet review:
616357

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the convergence of the finite element method with Lagrange multipliers for approximately solving the Dirichlet problem for a second-order elliptic equation in a plane domain with piecewise smooth boundary. Assuming mesh refinements around the corners, we construct families of boundary subspaces that are compatible with triangular Lagrange elements in the interior, and we carry out the error analysis of the resulting approximations in weighted Sobolev spaces.

**[1]**Robert A. Adams,*Sobolev spaces*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR**0450957****[2]**I. Babuška, "The finite element method with Lagrange multipliers,"*Numer. Math.*, v. 20, 1973, pp. 179-192.**[3]**Ivo Babuška and A. K. Aziz,*Survey lectures on the mathematical foundations of the finite element method*, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 1–359. With the collaboration of G. Fix and R. B. Kellogg. MR**0421106****[4]**I. Babuška, R. B. Kellogg, and J. Pitkäranta,*Direct and inverse error estimates for finite elements with mesh refinements*, Numer. Math.**33**(1979), no. 4, 447–471. MR**553353**, https://doi.org/10.1007/BF01399326**[5]**J. Bergh & J. Lötström,*Interpolation Spaces*, Springer-Verlag, Berlin, 1976.**[6]**F. Brezzi,*On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge**8**(1974), no. no. , no. R-2, 129–151 (English, with French summary). MR**365287****[7]**Philippe G. Ciarlet,*The finite element method for elliptic problems*, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR**0520174****[8]**V. A. Kondrat′ev,*Boundary value problems for elliptic equations in domains with conical or angular points*, Trudy Moskov. Mat. Obšč.**16**(1967), 209–292 (Russian). MR**0226187****[9]**Juhani Pitkäranta,*Boundary subspaces for the finite element method with Lagrange multipliers*, Numer. Math.**33**(1979), no. 3, 273–289. MR**553590**, https://doi.org/10.1007/BF01398644**[10]**Juhani Pitkäranta,*Local stability conditions for the Babuška method of Lagrange multipliers*, Math. Comp.**35**(1980), no. 152, 1113–1129. MR**583490**, https://doi.org/10.1090/S0025-5718-1980-0583490-9**[11]**Hans Triebel,*Interpolation theory for function spaces of Besov type defined in domains. II*, Math. Nachr.**58**(1973), 63–86. MR**361760**, https://doi.org/10.1002/mana.19730580106

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30

Retrieve articles in all journals with MSC: 65N30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1981-0616357-9

Article copyright:
© Copyright 1981
American Mathematical Society