## On a dimensional reduction method. I. The optimal selection of basis functions

HTML articles powered by AMS MathViewer

- by M. Vogelius and I. Babuška PDF
- Math. Comp.
**37**(1981), 31-46 Request permission

## Abstract:

This paper is the first in a series of three, which analyze an adaptive approximate approach for solving $(n + 1)$-dimensional boundary value problems by replacing them with systems of equations in*n*-dimensional space. In this approach the unknown functions of $(n + 1)$ variables are projected onto finite linear combinations of functions of just

*n*variables. This paper shows how the coefficients of these linear combinations can be chosen optimally.

## References

- I. Babuška and W. C. Rheinboldt,
*Mathematical problems of computational decisions in the finite element method*, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977, pp. 1–26. MR**0483538** - Viorel Barbu,
*Nonlinear semigroups and differential equations in Banach spaces*, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976. Translated from the Romanian. MR**0390843**, DOI 10.1007/978-94-010-1537-0
J. Bergh & J. LöfstrÖm, - P. G. Ciarlet and P. Destuynder,
*A justification of the two-dimensional linear plate model*, J. Mécanique**18**(1979), no. 2, 315–344 (English, with French summary). MR**533827**
N. Dunford & J. Schwartz, - K. O. Friedrichs and R. F. Dressler,
*A boundary-layer theory for elastic plates*, Comm. Pure Appl. Math.**14**(1961), 1–33. MR**122117**, DOI 10.1002/cpa.3160140102 - A. L. Gol′denveĭzer,
*Derivation of an approximate theory of bending of a plate by the method of asymptotic integration of the equations of the theory of elasticity*, J. Appl. Math. Mech.**26**(1963), 1000-1025. MR**0170523**, DOI 10.1016/0021-8928(62)90161-2 - L. V. Kantorovich and V. I. Krylov,
*Approximate methods of higher analysis*, Interscience Publishers, Inc., New York; P. Noordhoff Ltd., Groningen 1958. Translated from the 3rd Russian edition by C. D. Benster. MR**0106537** - J.-L. Lions,
*Perturbations singulières dans les problèmes aux limites et en contrôle optimal*, Lecture Notes in Mathematics, Vol. 323, Springer-Verlag, Berlin-New York, 1973 (French). MR**0600331**, DOI 10.1007/BFb0060528
P. M. Naghdi, - V. V. Poniatovskii,
*Theory for plates of medium thickness*, J. Appl. Math. Mech.**26**(1962), 478–486. MR**0151022**, DOI 10.1016/0021-8928(62)90077-1 - Frigyes Riesz and Béla Sz.-Nagy,
*Functional analysis*, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR**0071727**
M. Vogelius, - M. Vogelius and I. Babuška,
*On a dimensional reduction method. I. The optimal selection of basis functions*, Math. Comp.**37**(1981), no. 155, 31–46. MR**616358**, DOI 10.1090/S0025-5718-1981-0616358-0 - M. Vogelius and I. Babuška,
*On a dimensional reduction method. I. The optimal selection of basis functions*, Math. Comp.**37**(1981), no. 155, 31–46. MR**616358**, DOI 10.1090/S0025-5718-1981-0616358-0
I. E. Zino & E. A. Tropp,

*Interpolation Spaces*, Springer-Verlag, Berlin and New York, 1976. V. E. Chepiga, "On constructing a theory of multilayer anisotropic shells with prescribed arbitrary accuracy of order ${h^N}$,"

*Mech. Solids*, v. 12, 1977, pp. 113-120.

*Linear Operators*, Part I, Interscience, New York, 1958.

*Handbuch der Physik*, Band V ${\text {a}}/2$, Springer-Verlag, Berlin and New York, 1972, pp. 425-640.

*A Dimensional Reduction Approach to the Solution of Partial Differential Equations*, Ph. D. Thesis, University of Maryland, Dec. 1979.

*Asymptotic Methods in the Problems of Heat Transfer and Thermoelasticity*, Univ. of Leningrad Publ., Leningrad, 1978. (Russian)

## Additional Information

- © Copyright 1981 American Mathematical Society
- Journal: Math. Comp.
**37**(1981), 31-46 - MSC: Primary 65N99; Secondary 65J10
- DOI: https://doi.org/10.1090/S0025-5718-1981-0616358-0
- MathSciNet review: 616358