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A Block-by-Block Method

for Volterra Integra-Differential Equations

With Weakly-Singular Kernel

By Athena Makroglou*

Abstract. The theory of a block-by-block method for solving Volterra integro-differential

equations with continuous kernels (see Makroglou [4], [5]) is adapted to Volterra integro-

differential equations with weakly-singular kernels, and a rate of convergence is given.

1. Introduction. Consider the nonlinear Volterra integro-differential equation

(1.1) y'(x) = G[x,y(x), J* K(x, t, v(i))) dt       (x > 0),

given y(0), written in the form,

(1.2) y(x) = fX G(s, y(s), z(s)) ds + v(0)       (x > 0),
«'o

(1.3) z(x) = (' K(x, t,y(t)) dt       (x > 0),
■'o

with
K(x, s,y(s)) = K(x, s)y(s),

(L4) K(x, s) = l/|x - s\a,       0<a<l,0<j<x<Ar.

For the discretization of the equation (1.3), we shall use a product integration

technique in such a way that when the method is used for solving examples with

K(x, s, y(s)) = H(x, s, y(s))/\x - s\a it will not require the evaluation of

H(x, s, y(s)) for s > x, where it might, for example, not be defined (see Section 2).

Product integration techniques have been used for the solution of weakly-singular

integral equations; see for example Linz [3], Weiss [6], de Hoog and Weiss [2],

Baker [1].

For the discretization of Eq. (1.2) we shall use Eqs. (2.3) in Makroglou [5] and

produce a scheme which we called a generalized block-by-block method after

Weiss, scheme GC, though it is a new method for integro-differential equations, see

Section 3 below, originated in [4]. ('G' stands for 'Generalized' and 'C is kept here

in agreement with the notation used in [4] where it meant the third of the G

schemes GA, GB, GC.)

A rate of convergence of the scheme is given in Section 4.

For use in the discussion to follow, we define xmj = mh + Ujh, xmJk = mh +

UjUkh,j, k = 0, 1,. . . ,p; m = 0, 1,. . ., N - 1, where N,p integers, h > 0 so that

Nh = X and 0 < «0 < u, < • • • <up = I. We also assume the preliminaries and

definitions given in Makroglou [5].
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2. Discretization of Eq. (13). Consider the equation (1.3) with K(x, s, y(s)) as in

(1.4), that is the equation,

(2.1) z(x) = C K(x, t)y(t) dt,

where K(x, t) is given by (1.4). Discretizing at the points xmJ we have

fît — 1 / ■ a» 1 \ l. /• X

(2.2) z(xmJ) =   2   / K(xmJ, s)y(s) ds + j  ^ K(xmJ, s)y(s) ds,
, = 0    ih Jmh

or

m-\       ,

z(xmJ) = h 2   I    K(xmJ, ih + ht)y(ih + ht) dt

(") '-\,
+ hUj I    K(xmj, mh + Ujht)y(mh + Ujht) dt.

We now use the approximations

(2.4) y(ih + hi) » 2   ¿*('M*,,*),
/t-0

/>

y(mA + /i«,r) £s 2   Lk(t)y(mh + UjUkh)

(2.5) *=0
p p

— 2   ¿*(') 2   Lr(UjUk)y(x^r),
k=0 r-0

where Lk(t) are the Lagrangian coefficients, giving

V, = H2   2    V^\m,j,k)Lr(UjUk)y^r

(2.6) -0*-0
m — 1     P

+ A 2    2   V^(i,j,k)yitk,
i-O *=o

m = 0, 1.TV — 1 ; j = 0, 1, ...,/», (j = 1, 2, . . ., p, if u0 = 0), where we have

put

(2.7) V^(i,j, k) = [l K(xmJ, ih + uht)Lk(t) dt,

with

(2.8) "*"*    Út'm'

u = 1     if / = 0, 1, . . . , m — 1.

2.1. Estimation of the Coefficients V(m\i,j, k). Using the kernel (1.4) in (2.7), we

obtain

p

(2^       ^»>(u,*>-/ '"V,,.— */(«•*•/)(*)).
•'o I' - 'I

where

(2.10) D(k)=      II     (uk-uq),
q-0;q*k
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and

I = m + u, — i    for / = 0, 1, . . . , m — 1,
(2.11) J

1=1 for /' = wj,

or

(2.12) F*">(i,¿ k) = (-iy+x [(/_1)° II (tx/a - aq)tx/"-2 dt/ (au"h"D(k)),
Jl" 9=1

where

(2.13)
°q+l -/"M,,        ? « 0, 1, ...,*-  1,

<*q = I * Uq, q = k+ I,. . .,p.

The product Wq.x(tx/a - aq) in (2.12) can be written as

(2.14) IT (tx/a - aq) = c¿tx"Y + c^-y-1 + ■■■ +cp,
q-l

where, with Sm = axm + a2m + • • • + cÇ, we have

c0= 1,

(2.15) c, = -S„

9 = - (Sj + cxSj_x + c2Sj_2 + ■ ■ ■ +Cj_xSx)/j,      j = 2, 3, ... .

Substituting (2.14) in (2.12) and integrating, we find

<_iy+1   p       i(i - iy-a+1 - /'-«+n

<216>   ^"-^.V'-    '-« + ■—•

i = 0, 1, . . . , m;   k = 0, 1, . . . ,p; j = 1, . . . ,p   if  uQ = 0, j = 0, 1, . . . ,p   if

u0¥= 0.

3. Statement of the Method. According to the illustration given in the introduc-

tion, the approximate equations for scheme GC are

p

ym,j = h 2     wÍG(xm¿> ymjc> Zm,k)

(3-1)
+ h 2 2 wkG(xi,k>yi,k>z¡,k)+y(fy>

,»0  k = 0

r-0 A: = 0

(3.2) M_,   ,
+h 2 2 ^(U, *K*.

,=o *=o

m = 0, 1, . . ., N - l;j = 0, 1, . . . ,p, (j = 1, 2, . . . ,p if u0 « 0), where

(3.3) h^ = H Lk(x) dx,
Jo

(3.4) wk = wr = f\(x)dx,
Jo

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



98 ATHENA MAKROGLOU

P

(3.5) Lk(x)=     II    (x-Uj)/(uk-Uj),
j-Oj+k

and V(m)(i,j, k) are given by (2.16).

Equations (3.1)—(3.2) constitute a system of 2/7 + 2 (2p if u0 = 0) in general

nonlinear equations for ymß,ym „ . . . , ymp; zm0, zmX, ..., zmp.

4. Convergence. For the complete convergence proofs we refer to [4]. There, we

started by obtaining an asymptotic expansion for the error em = maxo^y^le,,,^,

emJ = z(xmj) — zmJ in the approximations (3.2). In doing this, the work in [2] was

of great help. Having obtained this expansion, one can then obtain a bound on

sm = [em, em]T along the lines of the convergence proof given in [5]. The conver-

gence result obtained is given as Theorem 1 below.

Theorem 1. Let

(i) g(x) E Pv (see preliminaries in [5]),

(ii) y(x) is p + 2 times continuously differentiable on 0 < x < X,

(iii) G(x, y, z) be p + v + 2 times continuously differentiable with respect to

x,y, z, respectively, on 0 < x < X, \y\ < y, \z\ < z where y = max0<x<x\y(x)\ and

z = Taax0<x<x\z(x)\. Then, there are constants C„ C2, C3, C4, C5 such that

llsJL < C5h"+X   ifv = 0,

(4-0 lk        , Í Cxh-+2 (1)
Kile*

m = 1,2, ... ,N — I, and

l|Sml|oo < , i/o > 0,
1 C2hp+2-a**    (2)

,    , C3hp+2        (I)
(4'2) IWL<U*—    (2)

and the inequalities occur with (I) or (2) according to where the maximum occurs

when considering \\ ■ \\x.

Some numerical results obtained by testing scheme GC on a linear and a

nonlinear example for both u0 = 0, u0¥^ 0 are displayed in [4] (see [4, Examples 3,

4, p. 97; pp. 152, 153, 157, 158]). Order of convergence at least 0(hp+x) was

verified.
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"The result (2) in (4.1) is changed here to C2A/,+2~a from C2hr + l in [4]. This because in [4, p. 201,

Eq. Ill-1.108] we have J¿ g(t)P^t) dt = 0 for g e Pc(>0).
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