Optimal numerical differentiation using three function evaluations
HTML articles powered by AMS MathViewer
- by J. Marshall Ash and Roger L. Jones PDF
- Math. Comp. 37 (1981), 159-167 Request permission
Abstract:
Approximation of $fâ (x)$ by a difference quotient of the form \[ {h^{ - 1}}[{a_1}f(x + {b_1}h) + {a_2}f(x + {b_2}h) + {a_3}f(x + {b_3}h)]\] is found to be optimized for a wide class of real-valued functions by the surprisingly asymmetric choice of ${\mathbf {b}} = ({b_1},{b_2},{b_3}) = (1/\sqrt 3 - 1,1/\sqrt 3 ,1/\sqrt 3 + 1)$. The nearly optimal choice of ${\mathbf {b}} = ( - 2,3,6)$ is also discussed.References
- W. G. Bickley, Formulae for numerical differentiation, Math. Gaz. 25 (1941), 19â27. MR 3580, DOI 10.2307/3606475
- J. N. Lyness, Differentiation formulas for analytic functions, Math. Comp. 22 (1968), 352â362. MR 230468, DOI 10.1090/S0025-5718-1968-0230468-5
- Herbert E. Salzer, Optimal points for numerical differentiation, Numer. Math. 2 (1960), 214â227. MR 117884, DOI 10.1007/BF01386225
Additional Information
- © Copyright 1981 American Mathematical Society
- Journal: Math. Comp. 37 (1981), 159-167
- MSC: Primary 65D05; Secondary 39A05
- DOI: https://doi.org/10.1090/S0025-5718-1981-0616368-3
- MathSciNet review: 616368