Lowest order squared rectangles and squares with the largest element not on the boundary
HTML articles powered by AMS MathViewer
- by A. J. W. Duijvestijn and P. Leeuw PDF
- Math. Comp. 37 (1981), 223-228 Request permission
Abstract:
The lowest order squared rectangles and squares with the largest element not on the boundary are presented.References
- R. L. Brooks, C. A. B. Smith, A. H. Stone, and W. T. Tutte, The dissection of rectangles into squares, Duke Math. J. 7 (1940), 312–340. MR 3040
- C. J. Bouwkamp, On the dissection of rectangles into squares. I, Nederl. Akad. Wetensch., Proc. 49 (1946), 1176–1188 = Indagationes Math. 8, 724–736 (1946). MR 19310
- P. J. Federico, Squaring rectangles and squares, Graph theory and related topics (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1977) Academic Press, New York-London, 1979, pp. 173–196. A historical review with annotated bibliography. MR 538045
- W. T. Tutte, A theory of $3$-connected graphs, Nederl. Akad. Wetensch. Proc. Ser. A 64 = Indag. Math. 23 (1961), 441–455. MR 0140094
- Adrianus Johannes Wilhelmus Duijvestijn, Electronic computation of squared rectangles, Technische Hogeschool Eindhoven, Eindhoven, 1962. Thesis; Technische Wetenschap aan de Technische Hogeschool te Eindhoven. MR 0144492 A. J. W. Duijvestijn, Algorithmic Identification of Graphs and Determination of the Order of the Automorphism Group of a Graph, Memorandum 220, Twente University of Technology, Enschede, The Netherlands, 1978. A. J. W. Duijvestijn, Tables of Simple Squared Squares of Orders 13 Through 21 and $2 \times 1$ Rectangles of Orders 17 Through 21, Twente University of Technology, Enschede, The Netherlands, 1979.
Additional Information
- © Copyright 1981 American Mathematical Society
- Journal: Math. Comp. 37 (1981), 223-228
- MSC: Primary 05B45; Secondary 52A45
- DOI: https://doi.org/10.1090/S0025-5718-1981-0616375-0
- MathSciNet review: 616375