## Lowest order squared rectangles and squares with the largest element not on the boundary

HTML articles powered by AMS MathViewer

- by A. J. W. Duijvestijn and P. Leeuw PDF
- Math. Comp.
**37**(1981), 223-228 Request permission

## Abstract:

The lowest order squared rectangles and squares with the largest element not on the boundary are presented.## References

- R. L. Brooks, C. A. B. Smith, A. H. Stone, and W. T. Tutte,
*The dissection of rectangles into squares*, Duke Math. J.**7**(1940), 312–340. MR**3040** - C. J. Bouwkamp,
*On the dissection of rectangles into squares. I*, Nederl. Akad. Wetensch., Proc.**49**(1946), 1176–1188 = Indagationes Math. 8, 724–736 (1946). MR**19310** - P. J. Federico,
*Squaring rectangles and squares*, Graph theory and related topics (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1977) Academic Press, New York-London, 1979, pp. 173–196. A historical review with annotated bibliography. MR**538045** - W. T. Tutte,
*A theory of $3$-connected graphs*, Nederl. Akad. Wetensch. Proc. Ser. A 64 = Indag. Math.**23**(1961), 441–455. MR**0140094** - Adrianus Johannes Wilhelmus Duijvestijn,
*Electronic computation of squared rectangles*, Technische Hogeschool Eindhoven, Eindhoven, 1962. Thesis; Technische Wetenschap aan de Technische Hogeschool te Eindhoven. MR**0144492**
A. J. W. Duijvestijn,

*Algorithmic Identification of Graphs and Determination of the Order of the Automorphism Group of a Graph*, Memorandum 220, Twente University of Technology, Enschede, The Netherlands, 1978. A. J. W. Duijvestijn,

*Tables of Simple Squared Squares of Orders 13 Through 21 and*$2 \times 1$

*Rectangles of Orders*17

*Through*21, Twente University of Technology, Enschede, The Netherlands, 1979.

## Additional Information

- © Copyright 1981 American Mathematical Society
- Journal: Math. Comp.
**37**(1981), 223-228 - MSC: Primary 05B45; Secondary 52A45
- DOI: https://doi.org/10.1090/S0025-5718-1981-0616375-0
- MathSciNet review: 616375