Finite element analysis of a scattering problem
HTML articles powered by AMS MathViewer
 by A. K. Aziz and R. Bruce Kellogg PDF
 Math. Comp. 37 (1981), 261272 Request permission
Abstract:
A finite element method for the solution of a scattering problem for the reduced wave equation is formulated and analyzed. The method involves a reformulation of the problem on a bounded domain with a nonlocal boundary condition. The space of trial functions includes piecewise polynomial functions and functions arising from spherical harmonics.References

M. Abramowitz & I. A. Stegun, Handbook of Mathematical Functions, U. S. Government Printing Office, Washington, D. C., 1965.
 M. S. Agranovič, Elliptic singular integrodifferential operators, Uspehi Mat. Nauk 20 (1965), no. 5 (125), 3–120 (Russian). MR 0198017
 A. K. Aziz (ed.), The mathematical foundations of the finite element method with applications to partial differential equations, Academic Press, New YorkLondon, 1972. MR 0347104 P. W. Barber, "Resonance electromagnetic absorption by non spherical dielectric objects," IEEE Trans. Microwave Theory. Tech, 1977, pp. 373381.
 Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, SpringerVerlag, BerlinNew York, 1976. MR 0482275 Peter Bettess "Infinite elements," Internat. J. Numer. Methods Engrg., v. 11, 1977, pp. 5364. F. Brezzi & C. Johnson, On the Coupling of Boundary Coupling and the Finite Element Method, Dept. of Computer Science, Chalmers University of Technology, Report 77.15R, 1977.
 P. Grisvard, Caractérisation de quelques espaces d’interpolation, Arch. Rational Mech. Anal. 25 (1967), 40–63 (French). MR 213864, DOI 10.1007/BF00281421 B. G. Guru & K. N. Chen, "Experimental and theoretical studies on electromagnetic fields induced inside finite biological bodies," IEEE Trans. Microwave Theory Tech., v. 24, 1976, pp. 433440. S. P. Marin, A Finite Element Method for Problems Involving the Helmholtz Equation in 2Dimensional Exterior Regions, Doctoral Thesis, CarnegieMellon University, 1978. C. Müller, Foundations of the Mathematical Theory of Electromagnetic Waves, SpringerVerlag, New York, 1969.
 C. Müller and H. Kersten, Zwei Klassen vollständiger Funktionensysteme zur Behandlung der Randwertaufgaben der Schwingungsgleichung $\Delta U+k^{2}U=0$, Math. Methods Appl. Sci. 2 (1980), no. 1, 48–67 (German, with English summary). MR 561378, DOI 10.1002/mma.1670020106
 James M. Ortega, Numerical analysis. A second course, Computer Science and Applied Mathematics, Academic Press, New YorkLondon, 1972. MR 0403154
 Alfred H. Schatz, An observation concerning RitzGalerkin methods with indefinite bilinear forms, Math. Comp. 28 (1974), 959–962. MR 373326, DOI 10.1090/S00255718197403733260
 G. W. Stewart, Introduction to matrix computations, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New YorkLondon, 1973. MR 0458818 J. A. Stratton, Electromagnetic Theory, McGrawHill, New York, 1941. K. Yosida, Functional Analysis, Grundlehren der Math. Wissenschaften, vol. 123, SpringerVerlag, Berlin and New York, 1975.
 O. C. Zienkiewicz, D. W. Kelly, and P. Bettess, The coupling of the finite element method and boundary solution procedures, Internat. J. Numer. Methods Engrg. 11 (1977), no. 2, 355–375. MR 451784, DOI 10.1002/nme.1620110210 A. K. Aziz, M. R. Dorr & R. B. Kellogg, A New Approximation Method for the Helmholtz Equation in an Exterior Domain, Technical Report, UMBC, 1981.
Additional Information
 © Copyright 1981 American Mathematical Society
 Journal: Math. Comp. 37 (1981), 261272
 MSC: Primary 65N30; Secondary 35J05
 DOI: https://doi.org/10.1090/S00255718198106286942
 MathSciNet review: 628694