Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Finite element analysis of a scattering problem
HTML articles powered by AMS MathViewer

by A. K. Aziz and R. Bruce Kellogg PDF
Math. Comp. 37 (1981), 261-272 Request permission

Abstract:

A finite element method for the solution of a scattering problem for the reduced wave equation is formulated and analyzed. The method involves a reformulation of the problem on a bounded domain with a nonlocal boundary condition. The space of trial functions includes piecewise polynomial functions and functions arising from spherical harmonics.
References
    M. Abramowitz & I. A. Stegun, Handbook of Mathematical Functions, U. S. Government Printing Office, Washington, D. C., 1965.
  • M. S. Agranovič, Elliptic singular integro-differential operators, Uspehi Mat. Nauk 20 (1965), no. 5 (125), 3–120 (Russian). MR 0198017
  • A. K. Aziz (ed.), The mathematical foundations of the finite element method with applications to partial differential equations, Academic Press, New York-London, 1972. MR 0347104
  • P. W. Barber, "Resonance electromagnetic absorption by non spherical dielectric objects," IEEE Trans. Microwave Theory. Tech, 1977, pp. 373-381.
  • Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275
  • Peter Bettess "Infinite elements," Internat. J. Numer. Methods Engrg., v. 11, 1977, pp. 53-64. F. Brezzi & C. Johnson, On the Coupling of Boundary Coupling and the Finite Element Method, Dept. of Computer Science, Chalmers University of Technology, Report 77.15R, 1977.
  • P. Grisvard, Caractérisation de quelques espaces d’interpolation, Arch. Rational Mech. Anal. 25 (1967), 40–63 (French). MR 213864, DOI 10.1007/BF00281421
  • B. G. Guru & K. N. Chen, "Experimental and theoretical studies on electromagnetic fields induced inside finite biological bodies," IEEE Trans. Microwave Theory Tech., v. 24, 1976, pp. 433-440. S. P. Marin, A Finite Element Method for Problems Involving the Helmholtz Equation in 2-Dimensional Exterior Regions, Doctoral Thesis, Carnegie-Mellon University, 1978. C. Müller, Foundations of the Mathematical Theory of Electromagnetic Waves, Springer-Verlag, New York, 1969.
  • C. Müller and H. Kersten, Zwei Klassen vollständiger Funktionensysteme zur Behandlung der Randwertaufgaben der Schwingungsgleichung $\Delta U+k^{2}U=0$, Math. Methods Appl. Sci. 2 (1980), no. 1, 48–67 (German, with English summary). MR 561378, DOI 10.1002/mma.1670020106
  • James M. Ortega, Numerical analysis. A second course, Computer Science and Applied Mathematics, Academic Press, New York-London, 1972. MR 0403154
  • Alfred H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comp. 28 (1974), 959–962. MR 373326, DOI 10.1090/S0025-5718-1974-0373326-0
  • G. W. Stewart, Introduction to matrix computations, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1973. MR 0458818
  • J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941. K. Yosida, Functional Analysis, Grundlehren der Math. Wissenschaften, vol. 123, Springer-Verlag, Berlin and New York, 1975.
  • O. C. Zienkiewicz, D. W. Kelly, and P. Bettess, The coupling of the finite element method and boundary solution procedures, Internat. J. Numer. Methods Engrg. 11 (1977), no. 2, 355–375. MR 451784, DOI 10.1002/nme.1620110210
  • A. K. Aziz, M. R. Dorr & R. B. Kellogg, A New Approximation Method for the Helmholtz Equation in an Exterior Domain, Technical Report, UMBC, 1981.
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC: 65N30, 35J05
  • Retrieve articles in all journals with MSC: 65N30, 35J05
Additional Information
  • © Copyright 1981 American Mathematical Society
  • Journal: Math. Comp. 37 (1981), 261-272
  • MSC: Primary 65N30; Secondary 35J05
  • DOI: https://doi.org/10.1090/S0025-5718-1981-0628694-2
  • MathSciNet review: 628694