Stability of pseudospectral and finite-difference methods for variable coefficient problems
HTML articles powered by AMS MathViewer
- by David Gottlieb, Steven A. Orszag and Eli Turkel PDF
- Math. Comp. 37 (1981), 293-305 Request permission
Abstract:
It is shown that pseudospectral approximation to a special class of variable coefficient one-dimensional wave equations is stable and convergent even though the wave speed changes sign within the domain. Computer experiments indicate similar results are valid for more general problems. Similarly, computer results indicate that the leapfrog finite-difference scheme is stable even though the wave speed changes sign within the domain. However, both schemes can be asymptotically unstable in time when a fixed spatial mesh is used.References
- B. Fornberg, On the instability of leap-frog and Crank-Nicolson approximations of a nonlinear partial differential equation, Math. Comp. 27 (1973), 45–57. MR 395249, DOI 10.1090/S0025-5718-1973-0395249-2
- Bengt Fornberg, On a Fourier method for the integration of hyperbolic equations, SIAM J. Numer. Anal. 12 (1975), no. 4, 509–528. MR 421096, DOI 10.1137/0712040
- David Gottlieb and Steven A. Orszag, Numerical analysis of spectral methods: theory and applications, CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1977. MR 0520152
- David Gottlieb, Liviu Lustman, and Steven A. Orszag, Spectral calculations of one-dimensional inviscid compressible flows, SIAM J. Sci. Statist. Comput. 2 (1981), no. 3, 296–310. MR 632901, DOI 10.1137/0902024
- David Gottlieb and Eli Turkel, On time discretizations for spectral methods, Stud. Appl. Math. 63 (1980), no. 1, 67–86. MR 578457, DOI 10.1002/sapm198063167 D. Gottlieb, S. A. Orszag & E. Turkel, Stability of Pseudospectral and Finite Difference Methods for Variable Coefficient Problems, ICASE Report 79-32, 1979.
- Bertil Gustafsson, On difference approximations to hyperbolic differential equations over long time intervals, SIAM J. Numer. Anal. 6 (1969), 508–522. MR 260210, DOI 10.1137/0706046
- Heinz-Otto Kreiss and Joseph Oliger, Comparison of accurate methods for the integration of hyperbolic equations, Tellus 24 (1972), 199–215 (English, with Russian summary). MR 319382, DOI 10.3402/tellusa.v24i3.10634
- Heinz-Otto Kreiss and Joseph Oliger, Stability of the Fourier method, SIAM J. Numer. Anal. 16 (1979), no. 3, 421–433. MR 530479, DOI 10.1137/0716035
- Andrew Majda, James McDonough, and Stanley Osher, The Fourier method for nonsmooth initial data, Math. Comp. 32 (1978), no. 144, 1041–1081. MR 501995, DOI 10.1090/S0025-5718-1978-0501995-4 S. A. Orszag, "Comparison of pseudospectral and spectral approximations," Stud. Appl. Math., v. 51, 1972, pp. 253-259.
- Steven A. Orszag, Spectral methods for problems in complex geometries, J. Comput. Phys. 37 (1980), no. 1, 70–92. MR 584322, DOI 10.1016/0021-9991(80)90005-4
- Joseph E. Pasciak, Spectral and pseudospectral methods for advection equations, Math. Comp. 35 (1980), no. 152, 1081–1092. MR 583488, DOI 10.1090/S0025-5718-1980-0583488-0
- Robert D. Richtmyer and K. W. Morton, Difference methods for initial-value problems, 2nd ed., Interscience Tracts in Pure and Applied Mathematics, No. 4, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR 0220455
- A. Zygmund, Trigonometric series: Vols. I, II, Cambridge University Press, London-New York, 1968. Second edition, reprinted with corrections and some additions. MR 0236587
Additional Information
- © Copyright 1981 American Mathematical Society
- Journal: Math. Comp. 37 (1981), 293-305
- MSC: Primary 65M10
- DOI: https://doi.org/10.1090/S0025-5718-1981-0628696-6
- MathSciNet review: 628696