Asymptotic expansions for a class of elliptic difference schemes
HTML articles powered by AMS MathViewer
- by Göran Starius PDF
- Math. Comp. 37 (1981), 321-326 Request permission
Abstract:
In this paper, we derive an asymptotic expansion of the global error for Kreiss’ difference scheme for the Dirichlet problem for Poisson’s equation. This scheme, combined with a deferred correction procedure or the Richardson extrapolation technique, yields a method of accuracy at least $O({h^{6.5}})$ in ${L_2}$, where h is the mesh length.References
- Victor Pereyra, Accelerating the convergence of discretization algorithms, SIAM J. Numer. Anal. 4 (1967), 508–533. MR 221726, DOI 10.1137/0704046
- Victor Pereyra, Wlodzimierz Proskurowski, and Olof Widlund, High order fast Laplace solvers for the Dirichlet problem on general regions, Math. Comp. 31 (1977), no. 137, 1–16. MR 431736, DOI 10.1090/S0025-5718-1977-0431736-X
- Göran Starius, Constructing orthogonal curvilinear meshes by solving initial value problems, Numer. Math. 28 (1977), no. 1, 25–48. MR 440968, DOI 10.1007/BF01403855
- Göran Starius, Composite mesh difference methods for elliptic boundary value problems, Numer. Math. 28 (1977), no. 2, 243–258. MR 461941, DOI 10.1007/BF01394455
Additional Information
- © Copyright 1981 American Mathematical Society
- Journal: Math. Comp. 37 (1981), 321-326
- MSC: Primary 65N15; Secondary 65B05
- DOI: https://doi.org/10.1090/S0025-5718-1981-0628698-X
- MathSciNet review: 628698