An algorithm for determining invertible quadratic isoparametric finite element transformations
HTML articles powered by AMS MathViewer
- by David A. Field PDF
- Math. Comp. 37 (1981), 347-360 Request permission
Abstract:
This paper derives an algorithm which determines the invertibility of arbitrary two-dimensional quadratic isoparametric finite element transformations. Theorems verifying the algorithm and guiding the construction of invertible transformations are proven.References
- A. E. Frey, C. A. Hall, and T. A. Porsching, Some results on the global inversion of bilinear and quadratic isoparametric finite element transformations, Math. Comp. 32 (1978), no. 143, 725–749. MR 474877, DOI 10.1090/S0025-5718-1978-0474877-4
- Watson Fulks, Advanced Calculus: An introduction to analysis, John Wiley & Sons, Inc., New York-London, 1961. MR 0122922
- A. S. Householder, Bigradients and the problem of Routh and Hurwitz, SIAM Rev. 10 (1968), 56–66. MR 229805, DOI 10.1137/1010003 C. J. de la Vallée Poussin, Cours d’Analyse Infinitésimale, Vol. I, 7th ed., Louvain, 1930. B. L. Van Der Waerden, Modern Algebra, Vol. II, Ungar, New York, 1950.
Additional Information
- © Copyright 1981 American Mathematical Society
- Journal: Math. Comp. 37 (1981), 347-360
- MSC: Primary 65N30; Secondary 65H10
- DOI: https://doi.org/10.1090/S0025-5718-1981-0628700-5
- MathSciNet review: 628700