Interpolation on uniform meshes by the translates of one function and related attenuation factors

Author:
F. Locher

Journal:
Math. Comp. **37** (1981), 403-416

MSC:
Primary 65D10; Secondary 42A15

DOI:
https://doi.org/10.1090/S0025-5718-1981-0628704-2

MathSciNet review:
628704

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The exact Fourier coefficients ${c_j}({P_n}f)$ are proportional to the discrete Fourier coefficients $d_j^{(n)}(f)$ if ${P_n}$ is a translation invariant operator which depends only on the values of *f* on an equidistant mesh of width $2\pi /n$. The proportionality factors which depend only on ${P_n}$ but not on *f* are called attenuation factors and have been calculated for several operators ${P_n}$ of spline type. Here we analyze first the interpolation problem which is produced by the functions $\sigma ( \bullet - 2\pi j/n),j = 0, \ldots ,n - 1$, where $\sigma$ is a suitable $2\pi$-periodic generating function. It is essential that the associated interpolation matrix is of discrete convolution type. Thus, we can derive conditions guaranteeing the unique solvability of the interpolation problem and representations of the interpolating function. Then the attenuation factors may be expressed in terms of the Fourier coefficients of $\sigma$. We point especially to the case where $\sigma$ is a reproducing kernel in a suitable Hilbert space. Here we get attenuation factors of a new type which are generated by interpolation with analytic functions.

- Stefan Bergman,
*The kernel function and conformal mapping*, Second, revised edition, American Mathematical Society, Providence, R.I., 1970. Mathematical Surveys, No. V. MR**0507701**
L. Collatz & W. Quade, "Zur Interpolationstheorie der reellen periodischen Funktionen," - Hartmut Ehlich,
*Untersuchungen zur numerischen Fourieranalyse*, Math. Z.**91**(1966), 380–420 (German). MR**207241**, DOI https://doi.org/10.1007/BF01110651 - Walter Gautschi,
*Attenuation factors in practical Fourier analysis*, Numer. Math.**18**(1971/72), 373–400. MR**305641**, DOI https://doi.org/10.1007/BF01406676 - Michael Golomb,
*Approximation by periodic spline interpolants on uniform meshes*, J. Approximation Theory**1**(1968), 26–65. MR**233121**, DOI https://doi.org/10.1016/0021-9045%2868%2990055-5 - Michael Golomb,
*Interpolation operators as optimal recovery schemes for classes of analytic functions*, Optimal estimation in approximation theory (Proc. Internat. Sympos., Freudenstadt, 1976) Plenum, New York, 1977, pp. 93–138. MR**0481730** - Peter Henrici,
*Fast Fourier methods in computational complex analysis*, SIAM Rev.**21**(1979), no. 4, 481–527. MR**545882**, DOI https://doi.org/10.1137/1021093 - W. Knauff and R. Kreß,
*Optimale Approximation linearer Funktionale auf periodischen Funktionen*, Numer. Math.**22**(1973/74), 187–205 (German, with English summary). MR**350286**, DOI https://doi.org/10.1007/BF01436967 - Rainer Kreß,
*Zur numerischen Integration periodischer Funktionen nach der Rechteckregel*, Numer. Math.**20**(1972/73), 87–92 (German, with English summary). MR**317524**, DOI https://doi.org/10.1007/BF01436645 - Herbert Meschkowski,
*Reihenentwicklungen in der mathematischen Physik*, Bibliographisches Institut, Mannheim, 1963 (German). MR**0158192** - Arnold Schönhage,
*Approximationstheorie*, Walter de Gruyter & Co., Berlin-New York, 1971 (German). MR**0277960**

*S.-B. Preuss. Akad. Wiss. Phys.-Math. Kl.*, v. 30, 1938, pp. 383-429.

Retrieve articles in *Mathematics of Computation*
with MSC:
65D10,
42A15

Retrieve articles in all journals with MSC: 65D10, 42A15

Additional Information

Article copyright:
© Copyright 1981
American Mathematical Society