## A sparse quasi-Newton update derived variationally with a nondiagonally weighted Frobenius norm

HTML articles powered by AMS MathViewer

- by Ph. L. Toint PDF
- Math. Comp.
**37**(1981), 425-433 Request permission

## Abstract:

The problem of symmetric sparse updating is considered from a variational point of view and a new class of sparse symmetric quasi-Newton updating formulae is derived. This class results from the use of a nondiagonally weighted Frobenius norm. The computation of the update involves only one positive definite and symmetric linear system that has the same sparsity pattern as the problem itself.## References

- C. G. Broyden,
*A class of methods for solving nonlinear simultaneous equations*, Math. Comp.**19**(1965), 577–593. MR**198670**, DOI 10.1090/S0025-5718-1965-0198670-6
W. C. Davidon, - J. E. Dennis Jr. and Jorge J. Moré,
*Quasi-Newton methods, motivation and theory*, SIAM Rev.**19**(1977), no. 1, 46–89. MR**445812**, DOI 10.1137/1019005
J. E. Dennis & R. B. Schnabel, - Donald Goldfarb,
*A family of variable-metric methods derived by variational means*, Math. Comp.**24**(1970), 23–26. MR**258249**, DOI 10.1090/S0025-5718-1970-0258249-6 - J. Greenstadt,
*Variations on variable-metric methods. (With discussion)*, Math. Comp.**24**(1970), 1–22. MR**258248**, DOI 10.1090/S0025-5718-1970-0258248-4 - H. Y. Huang,
*Unified approach to quadratically convergent algorithms for function minimization*, J. Optim. Theory Appl.**5**(1970), 405–423. MR**288939**, DOI 10.1007/BF00927440
E. S. Marwil, - J. M. Ortega and W. C. Rheinboldt,
*Iterative solution of nonlinear equations in several variables*, Academic Press, New York-London, 1970. MR**0273810** - M. J. D. Powell,
*A new algorithm for unconstrained optimization*, Nonlinear Programming (Proc. Sympos., Univ. of Wisconsin, Madison, Wis., 1970) Academic Press, New York, 1970, pp. 31–65. MR**0272162**
M. J. D. Powell, - L. K. Schubert,
*Modification of a quasi-Newton method for nonlinear equations with a sparse Jacobian*, Math. Comp.**24**(1970), 27–30. MR**258276**, DOI 10.1090/S0025-5718-1970-0258276-9
D. F. Shanno, - D. F. Shanno and Kang Hoh Phua,
*Matrix conditioning and nonlinear optimization*, Math. Programming**14**(1978), no. 2, 149–160. MR**474819**, DOI 10.1007/BF01588962 - Ph. L. Toint,
*On sparse and symmetric matrix updating subject to a linear equation*, Math. Comp.**31**(1977), no. 140, 954–961. MR**455338**, DOI 10.1090/S0025-5718-1977-0455338-4 - Ph. Toint,
*On the superlinear convergence of an algorithm for solving a sparse minimization problem*, SIAM J. Numer. Anal.**16**(1979), no. 6, 1036–1045. MR**551324**, DOI 10.1137/0716076 - Ph. Toint,
*A note about sparsity exploiting quasi-Newton updates*, Math. Programming**21**(1981), no. 2, 172–181. MR**623836**, DOI 10.1007/BF01584238

*Variable Metric Method for Minimization*, Report #ANL-5990, (Rev.) A.N.L. Research and Development Report, 1959.

*Least Change Secant Updates for Quasi-Newton Methods*, Report #TR78-344, Dept. of Computer Science, Cornell Univ., 1978. J. E. Dennis & H. F. Walker,

*Convergence Theorems for Least Change Secant Update Methods*, Report #TR476-(141-171-163)-2, Dept. of Mathematical Science, Rice University, Houston, 1979.

*Exploiting Sparsity in Newton-Like Methods*, Ph. D. Thesis, Cornell Univ., 1978.

*Quasi-Newton Formulae for Sparse Second Derivative Matrices*, Report #DAMTP 1979/NA7, Dept. of Applied Mathematics and Theoretical Physics, Cambridge University (G.B.), 1979.

*On Variable-Metric Methods for Sparse Hessians, The New Method*, Report #MIS TR 27, Dept. of Management Information Systems, University of Arizona, Tuscon, 1978.

## Additional Information

- © Copyright 1981 American Mathematical Society
- Journal: Math. Comp.
**37**(1981), 425-433 - MSC: Primary 65F30; Secondary 15A24, 65K10
- DOI: https://doi.org/10.1090/S0025-5718-1981-0628706-6
- MathSciNet review: 628706