Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On a method of asymptotic evaluation of multiple integrals


Authors: R. Wong and J. P. McClure
Journal: Math. Comp. 37 (1981), 509-521
MSC: Primary 41A60; Secondary 41A63
DOI: https://doi.org/10.1090/S0025-5718-1981-0628712-1
Remarks: Math. Comp. 45, no. 171 (1969), pp. 197-198.
MathSciNet review: 628712
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, some of the formal arguments given by Jones and Kline [J. Math. Phys., v. 37, 1958, pp. 1-28] are made rigorous. In particular, the reduction procedure of a multiple oscillatory integral to a one-dimensional Fourier transform is justified, and a Taylor-type theorem with remainder is proved for the Dirac $\delta$-function. The analyticity condition of Jones and Kline is now replaced by infinite differentiability. Connections with the asymptotic expansions of Jeanquartier and Malgrange are also discussed.


References [Enhancements On Off] (What's this?)

  • Norman Bleistein and Richard A. Handelsman, Multidimensional stationary phase. An alternative derivation, SIAM J. Math. Anal. 6 (1975), 480–487. MR 361570, DOI https://doi.org/10.1137/0506042
  • N. Bleistein & R. A. Handelsman, Asymptotic Expansions of Integrals, Holt, Rinehart and Winston, New York, 1975.
  • Nicholas Chako, Asymptotic expansions of double and multiple integrals occurring in diffraction theory, J. Inst. Math. Appl. 1 (1965), 372–422. MR 204944
  • R. Courant, Differential and Integral Calculus, vol. 2, Blackie & Son Ltd., London, 1970.
  • J. J. Duistermaat, Oscillatory integrals, Lagrange immersions and unfolding of singularities, Comm. Pure Appl. Math. 27 (1974), 207–281. MR 405513, DOI https://doi.org/10.1002/cpa.3160270205
  • Joachim Focke, Asymptotische Entwicklungen mittels der Methode der stationären Phase, Ber. Verh. Sächs. Akad. Wiss. Leipzig Math.-Nat. Kl. 101 (1954), no. 3, 48 (German). MR 68650
  • I. M. Gel′fand and Z. Ya. Ĺ apiro, Homogeneous functions and their extensions, Amer. Math. Soc. Transl. (2) 8 (1958), 21–85. MR 0094547
  • I. M. Gel’fand and G. E. Shilov, Generalized functions. Vol. I: Properties and operations, Academic Press, New York-London, 1964. Translated by Eugene Saletan. MR 0166596
  • Helmut A. Hamm, Remarks on asymptotic integrals, the polynomial of I. N. Bernstein and the Picard-Lefschetz monodromy, Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll., Williamstown, Mass., 1975) Amer. Math. Soc., Providence, R.I., 1977, pp. 31–35. MR 0590055
  • Pierre Jeanquartier, DĂ©veloppement asymptotique de la distribution de Dirac attachĂ©e Ă  une fonction analytique, C. R. Acad. Sci. Paris SĂ©r. A-B 201 (1970), A1159–A1161 (French). MR 420695
  • D. S. Jones, Generalised functions, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0217534
  • Douglas S. Jones and Morris Kline, Asymptotic expansion of multiple integrals and the method of stationary phase, J. Math. and Phys. 37 (1958), 1–28. MR 103379, DOI https://doi.org/10.1002/sapm19583711
  • Bernard Malgrange, IntĂ©grales asymptotiques et monodromie, Ann. Sci. École Norm. Sup. (4) 7 (1974), 405–430 (1975) (French). MR 372243
  • F. W. J. Olver, Error bounds for stationary phase approximations, SIAM J. Math. Anal. 5 (1974), 19–29. MR 333545, DOI https://doi.org/10.1137/0505003
  • I. M. Ryshik & I. S. Gradstein, Table of Integrals, Series, and Products, Academic Press, New York, 1965. R. T. Seeley, Distributions on Surfaces, Report T.W. 78, Mathematical Centre, Amsterdam, 1962.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 41A60, 41A63

Retrieve articles in all journals with MSC: 41A60, 41A63


Additional Information

Keywords: Asymptotic expansion, multi-dimensional stationary-phase approximation, Dirac <IMG WIDTH="15" HEIGHT="19" ALIGN="BOTTOM" BORDER="0" SRC="images/img1.gif" ALT="$\delta$">-function, surface distribution
Article copyright: © Copyright 1981 American Mathematical Society