On the distribution of pseudoprimes
HTML articles powered by AMS MathViewer
 by Carl Pomerance PDF
 Math. Comp. 37 (1981), 587593 Request permission
Abstract:
Let $\mathcal {P}(x)$ denote the pseudoprime counting function. With \[ L(x) = \exp \{ \log x\log \log \log x/\log \log x\} ,\] we prove $\mathcal {P}(x) \leqslant x \bullet L{(x)^{  1/2}}$ for large x, an improvement on the 1956 work of Erdös. We conjecture that $\mathcal {P}(x) = x \bullet L{(x)^{  1 + o(1)}}$.References

N. G. de Bruijn, "On the number of positive integers $\leqslant x$ and free of prime factors $> y$. II," Nederl. Akad. Wetensch. Proc. Ser. A, v. 69, 1966, pp. 239247.
 E. Rodney Canfield and Carl Pomerance, On the problem of uniqueness for the maximum Stirling number(s) of the second kind, Integers 2 (2002), A1, 13. MR 1876176
 P. Erdös, On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen 4 (1956), 201–206. MR 79031
 P. Erdős, On the sum $\sum _{d2^{n}1}d^{1}$, Israel J. Math. 9 (1971), 43–48. MR 269613, DOI 10.1007/BF02771618
 Carl Pomerance, Popular values of Euler’s function, Mathematika 27 (1980), no. 1, 84–89. MR 581999, DOI 10.1112/S0025579300009967
 Carl Pomerance, A new lower bound for the pseudoprime counting function, Illinois J. Math. 26 (1982), no. 1, 4–9. MR 638549
 Carl Pomerance, J. L. Selfridge, and Samuel S. Wagstaff Jr., The pseudoprimes to $25\cdot 10^{9}$, Math. Comp. 35 (1980), no. 151, 1003–1026. MR 572872, DOI 10.1090/S00255718198005728727 R. A. Rankin, "The difference between consecutive prime numbers," J. London Math. Soc., v. 13, 1938, pp. 242247.
Additional Information
 © Copyright 1981 American Mathematical Society
 Journal: Math. Comp. 37 (1981), 587593
 MSC: Primary 10A21; Secondary 10A20
 DOI: https://doi.org/10.1090/S00255718198106287170
 MathSciNet review: 628717