On effective computation of fundamental units. I
HTML articles powered by AMS MathViewer
- by Michael Pohst and Hans Zassenhaus PDF
- Math. Comp. 38 (1982), 275-291 Request permission
Abstract:
The new method for efficient computation of the fundamental units of an algebraic number field developed by the authors in an earlier paper is considerably improved with respect to (Section 1) utilization to best advantage of the element of choice inherent in the method and the mastery of the linear programming techniques involved, (Section 2) ideal factorization, and (Section 3) the determination of sharper upper bounds for the index of ${U_\varepsilon }$ in ${U_F}$.References
-
R. Kannan, A Polynomial Algorithm for the Two-Variable Integer Programming Problem, Report No. 78116, Institut für Ökonometrie und Operations Research, Universität Bonn.
- Michael Pohst, Regulatorabschätzungen für total reelle algebraische Zahlkörper, J. Number Theory 9 (1977), no. 4, 459–492 (German, with English summary). MR 460274, DOI 10.1016/0022-314X(77)90007-5
- Michael Pohst and Hans Zassenhaus, An effective number geometric method of computing the fundamental units of an algebraic number field, Math. Comp. 31 (1977), no. 139, 754–770. MR 498486, DOI 10.1090/S0025-5718-1977-0498486-5
- M. Pohst and H. Zassenhaus, On unit computation in real quadratic fields, Symbolic and algebraic computation (EUROSAM ’79, Internat. Sympos., Marseille, 1979) Lecture Notes in Comput. Sci., vol. 72, Springer, Berlin-New York, 1979, pp. 140–152. MR 575687 R. Zimmert, Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung, Thesis, Bielefeld, 1978.
Additional Information
- © Copyright 1982 American Mathematical Society
- Journal: Math. Comp. 38 (1982), 275-291
- MSC: Primary 12A45; Secondary 12-04
- DOI: https://doi.org/10.1090/S0025-5718-1982-0637307-6
- MathSciNet review: 637307