Optimal error properties of finite element methods for second order elliptic Dirichlet problems
HTML articles powered by AMS MathViewer
- by Arthur G. Werschulz PDF
- Math. Comp. 38 (1982), 401-413 Request permission
Abstract:
We use the informational approach of Traub and Woźniakowski [9] to study the variational form of the second order elliptic Dirichlet problem $Lu = f$ on $\Omega \subset {{\mathbf {R}}^N}$. For $f \in {H^r}(\Omega )$, where $r \geqslant - 1$, a quasi-uniform finite element method using n linear functionals ${\smallint _\Omega }f{\psi _i}$ has ${H^1}(\Omega )$-norm error $\Theta ({n^{ - (r + 1)/N}})$. We prove that it is asymptotically optimal among all methods using any information consisting of any n linear functionals. An analogous result holds if L is of order 2m: if $f \in {H^r}(\Omega )$, where $r \geqslant - m$, then there is a finite element method whose ${H^\alpha }(\Omega )$-norm error is $\Theta ({n^{ - (2m + r - \alpha )/N}})$ for $0 \leqslant \alpha \leqslant m$, and this is asymptotically optimal; thus, the optimal error improves as m increases. If the integrals ${\smallint _\Omega }f{\psi _i}$ are approximated by using n evaluations of f, then there is a finite element method with quadrature with ${H^1}(\Omega )$-norm error $O({n^{ - r/N}})$ where $r > N/2$. We show that when $N = 1$, there is no method using n function evaluations whose error is better than $\Omega ({n^{ - r}})$; thus for $N = 1$, the finite element method with quadrature is asymptotically optimal among all methods using n evaluations of f.References
- Shmuel Agmon, Lectures on elliptic boundary value problems, Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. MR 0178246
- Ivo Babuška and A. K. Aziz, Survey lectures on the mathematical foundations of the finite element method, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 1–359. With the collaboration of G. Fix and R. B. Kellogg. MR 0421106
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 0520174
- P. G. Ciarlet and P.-A. Raviart, Interpolation theory over curved elements, with applications to finite element methods, Comput. Methods Appl. Mech. Engrg. 1 (1972), 217–249. MR 375801, DOI 10.1016/0045-7825(72)90006-0
- Joseph W. Jerome, Asymptotic estimates of the ${\cal L}_{2}\,n$-width, J. Math. Anal. Appl. 22 (1968), 449–464. MR 228905, DOI 10.1016/0022-247X(68)90188-1
- Joseph W. Jerome, On $n$-widths in Sobolev spaces and applications to elliptic boundary value problems, J. Math. Anal. Appl. 29 (1970), 201–215. MR 254484, DOI 10.1016/0022-247X(70)90109-5
- Martin H. Schultz, Multivariate spline functions and elliptic problems, Approximations with Special Emphasis on Spline Functions (Proc. Sympos. Univ. of Wisconsin, Madison, Wis., 1969) Academic Press, New York, 1969, pp. 279–347. MR 0257560
- S. L. Sobolev, On the order of convergence of cubature formulae, Dokl. Akad. Nauk SSSR 162 (1965), 1005–1008 (Russian). MR 0179528
- Joe Fred Traub and H. Woźniakowsi, A general theory of optimal algorithms, ACM Monograph Series, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 584446
Additional Information
- © Copyright 1982 American Mathematical Society
- Journal: Math. Comp. 38 (1982), 401-413
- MSC: Primary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1982-0645658-4
- MathSciNet review: 645658