Some optimal error estimates for piecewise linear finite element approximations
HTML articles powered by AMS MathViewer
- by Rolf Rannacher and Ridgway Scott PDF
- Math. Comp. 38 (1982), 437-445 Request permission
Abstract:
It is shown that the Ritz projection onto spaces of piecewise linear finite elements is bounded in the Sobolev space, $\hat {W}_p^1$, for $2 \leqslant p \leqslant \infty$. This implies that for functions in $\hat {W}_p^1 \cap W_p^2$ the error in approximation behaves like $O(h)$ in $W_p^1$, for $2 \leqslant p \leqslant \infty$, and like $O({h^2})$ in ${L_p}$, for $2 \leqslant p < \infty$. In all these cases the additional logarithmic factor previously included in error estimates for linear finite elements does not occur.References
- J. Frehse and R. Rannacher, Eine $L^{1}$-Fehlerabschätzung für diskrete Grundlösungen in der Methode der finiten Elemente, Finite Elemente (Tagung, Univ. Bonn, Bonn, 1975) Bonn. Math. Schrift., No. 89, Inst. Angew. Math., Univ. Bonn, Bonn, 1976, pp. 92–114 (German, with English summary). MR 0471370
- Isaac Fried, On the optimality of the pointwise accuracy of the finite element solution, Internat. J. Numer. Methods Engrg. 15 (1980), no. 3, 451–456. MR 560779, DOI 10.1002/nme.1620150311
- Pierre Grisvard, Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain, Numerical solution of partial differential equations, III (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md., 1975) Academic Press, New York, 1976, pp. 207–274. MR 0466912
- Frank Natterer, Über die punktweise Konvergenz finiter Elemente, Numer. Math. 25 (1975/76), no. 1, 67–77 (German, with English summary). MR 474884, DOI 10.1007/BF01419529
- J. A. Nitsche, $L_{\infty }$-convergence of finite element approximation, Journées “Éléments Finis” (Rennes, 1975) Univ. Rennes, Rennes, 1975, pp. 18. MR 568857
- Joachim Nitsche, $L_{\infty }$-convergence of finite element approximations, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977, pp. 261–274. MR 0488848
- A. H. Schatz and L. B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains. I, Math. Comp. 32 (1978), no. 141, 73–109. MR 502065, DOI 10.1090/S0025-5718-1978-0502065-1
- Ridgway Scott, Optimal $L^{\infty }$ estimates for the finite element method on irregular meshes, Math. Comp. 30 (1976), no. 136, 681–697. MR 436617, DOI 10.1090/S0025-5718-1976-0436617-2
- Dennis Jespersen, Ritz-Galerkin methods for singular boundary value problems, SIAM J. Numer. Anal. 15 (1978), no. 4, 813–834. MR 488786, DOI 10.1137/0715054
Additional Information
- © Copyright 1982 American Mathematical Society
- Journal: Math. Comp. 38 (1982), 437-445
- MSC: Primary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1982-0645661-4
- MathSciNet review: 645661