Some optimal error estimates for piecewise linear finite element approximations
Authors:
Rolf Rannacher and Ridgway Scott
Journal:
Math. Comp. 38 (1982), 437-445
MSC:
Primary 65N30
DOI:
https://doi.org/10.1090/S0025-5718-1982-0645661-4
MathSciNet review:
645661
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: It is shown that the Ritz projection onto spaces of piecewise linear finite elements is bounded in the Sobolev space, $\hat {W}_p^1$, for $2 \leqslant p \leqslant \infty$. This implies that for functions in $\hat {W}_p^1 \cap W_p^2$ the error in approximation behaves like $O(h)$ in $W_p^1$, for $2 \leqslant p \leqslant \infty$, and like $O({h^2})$ in ${L_p}$, for $2 \leqslant p < \infty$. In all these cases the additional logarithmic factor previously included in error estimates for linear finite elements does not occur.
- J. Frehse and R. Rannacher, Eine $L^{1}$-FehlerabschĂ€tzung fĂŒr diskrete Grundlösungen in der Methode der finiten Elemente, Finite Elemente (Tagung, Univ. Bonn, Bonn, 1975) Inst. Angew. Math., Univ. Bonn, Bonn, 1976, pp. 92â114. Bonn. Math. Schrift., No. 89 (German, with English summary). MR 0471370
- Isaac Fried, On the optimality of the pointwise accuracy of the finite element solution, Internat. J. Numer. Methods Engrg. 15 (1980), no. 3, 451â456. MR 560779, DOI https://doi.org/10.1002/nme.1620150311
- Pierre Grisvard, Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain, Numerical solution of partial differential equations, III (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md., 1975) Academic Press, New York, 1976, pp. 207â274. MR 0466912
- Frank Natterer, Ăber die punktweise Konvergenz finiter Elemente, Numer. Math. 25 (1975/76), no. 1, 67â77 (German, with English summary). MR 474884, DOI https://doi.org/10.1007/BF01419529
- J. A. Nitsche, $L_{\infty }$-convergence of finite element approximation, JournĂ©es âĂlĂ©ments Finisâ (Rennes, 1975) Univ. Rennes, Rennes, 1975, pp. 18. MR 568857
- Joachim Nitsche, $L_{\infty }$-convergence of finite element approximations, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Springer, Berlin, 1977, pp. 261â274. Lecture Notes in Math., Vol. 606. MR 0488848
- A. H. Schatz and L. B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains. I, Math. Comp. 32 (1978), no. 141, 73â109. MR 502065, DOI https://doi.org/10.1090/S0025-5718-1978-0502065-1
- Ridgway Scott, Optimal $L^{\infty }$ estimates for the finite element method on irregular meshes, Math. Comp. 30 (1976), no. 136, 681â697. MR 436617, DOI https://doi.org/10.1090/S0025-5718-1976-0436617-2
- Dennis Jespersen, Ritz-Galerkin methods for singular boundary value problems, SIAM J. Numer. Anal. 15 (1978), no. 4, 813â834. MR 488786, DOI https://doi.org/10.1137/0715054
Retrieve articles in Mathematics of Computation with MSC: 65N30
Retrieve articles in all journals with MSC: 65N30
Additional Information
Keywords:
Maximum norm estimates,
finite element methods
Article copyright:
© Copyright 1982
American Mathematical Society