## An algorithm for solving a certain class of Diophantine equations. I

HTML articles powered by AMS MathViewer

- by David Lee Hilliker PDF
- Math. Comp.
**38**(1982), 611-626 Request permission

## Abstract:

A class of Diophantine equations is defined and an algorithm for solving each equation in this class is developed. The methods consist of techniques for the computation of an upper bound for the absolute value of each solution. The computability of these bounds is guaranteed. Typically, these bounds are well within the range of computer programming and so they constitute a practical method for computing all solutions to the Diophantine equation in question. As a first application, a bound for a cubic equation is computed. As a second application, a set of quartic equations is studied. Methods are developed for deriving various sets of conditions on the coefficients in such equations under which a bound exists and can be computed.## References

- Alan Baker,
*Transcendental number theory*, Cambridge University Press, London-New York, 1975. MR**0422171** - Ove Hemer,
*On the solvability of the Diophantine equation $ax^2+by^2+cz^2=0$ in imaginary Euclidean quadratic fields*, Ark. Mat.**2**(1952), 57–82. MR**49917**, DOI 10.1007/BF02591382
David Lee Hilliker, "An algorithm for solving a certain class of Diophantine equations. II," - Hymie London and Raphael Finkelstein,
*On Mordell’s equation $y^{2}-k=x^{3}$*, Bowling Green State University, Bowling Green, Ohio, 1973. MR**0340172**
Edmond Maillet, "Sur les équations indéterminées à deux et trois variables qui n’ont qu’un nombre fini de solutions en nombres entieres," - L. J. Mordell,
*A Chapter in the Theory of Numbers*, Cambridge, at the University Press; New York, The Macmillan Company, 1947. MR**0020093**
Louis Joel Mordell, - A. Schinzel,
*An improvement of Runge’s theorem on Diophantine equations*, Comment. Pontificia Acad. Sci.**2**(1969), no. 20, 1–9 (English, with Latin summary). MR**276174**
Th. Skolem, "Über ganzzahlige Lösungen einer Klasse unbestimmter Gleichungen,"

**(to be submitted)**. David Lee Hilliker & Ray Steiner, "On Mordell’s Diophantine equation,"

**(to be submitted)**. David Lee Hilliker & E. G. Straus, "On Puiseux series whose curves pass through an infinity of algebraic lattice points,"

**(to be submitted)**. David Lee Hilliker & E. G. Straus, "Determination of bounds for the solutions to those binary Diophantine equations that satisfy the hypotheses of Runge’s theorem,"

**(to be submitted)**.

*J. Math. Pures Appl.*, v. 6 (5), 1900, pp. 261-277. See Jbuch., Vol. 30, pp. 188-189. Edmond Maillet, "Sur une catégorie d’équations indéterminées n’ayant en nombres entiers qu’un nombre fini de solutions,"

*Nouv. Ann. de Math.*, v. 18, Series 4, 1918, pp. 281-292. See Jbuch., Vol. 31, pp. 190-191.

*Diophantine Equations*, Academic Press, London and New York, 1969. See MR

**40**#2600; Reviews in Number Theory, D02-23. Trygve Nagell, "Einige Gleichungen von der Form $a{y^2} + by + c = d{x^3}$,"

*Avh. Norske Vid.-Akad. Oslo, Mat.-Natur. Kl.*, No. 7, 1930, 15 pp. See Jbuch., Vol. 56, p. 877. C. Runge, "Ueber ganzzahlige Lösungen von Gleichungen zwischen zwei Veränderlichen,"

*J. Reine Angew. Math.*, v. 100, 1887, pp. 425-435. See Jbuch., Vol. 19, pp. 76-77.

*Norsk Mat. Forenings Skrifter*, Serie I, Nr. 10, 1922, 12 pp. See Jbuch., Vol. 48, p. 139. Th. Skolem,

*Diophantische Gleichungen*, Verlag von Julius Springer, Berlin, 1938; reprinted by Chelsea, New York, 1950. See Jbuch., Vol. 64, p. 112.

## Additional Information

- © Copyright 1982 American Mathematical Society
- Journal: Math. Comp.
**38**(1982), 611-626 - MSC: Primary 10B15; Secondary 10-04
- DOI: https://doi.org/10.1090/S0025-5718-1982-0645676-6
- MathSciNet review: 645676