Density problems involving

Author:
Patrick J. Costello

Journal:
Math. Comp. **38** (1982), 633-637

MSC:
Primary 10A45

DOI:
https://doi.org/10.1090/S0025-5718-1982-0645678-X

MathSciNet review:
645678

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Lower bounds on the density of zeros of are provided for certain values of *r*.

**[1]**Tom M. Apostol,*Introduction to analytic number theory*, Springer-Verlag, New York-Heidelberg, 1976. Undergraduate Texts in Mathematics. MR**0434929****[2]**A. O. L. Atkin,*Proof of a conjecture of Ramanujan*, Glasgow Math. J.**8**(1967), 14–32. MR**205958**, https://doi.org/10.1017/S0017089500000045**[3]**A. O. L. Atkin,*Multiplicative congruence properties and density problems for 𝑝(𝑛)*, Proc. London Math. Soc. (3)**18**(1968), 563–576. MR**0227105**, https://doi.org/10.1112/plms/s3-18.3.563**[4]**R. P. Bambah,*Two congruence properties of Ramanujan’s function 𝜏(𝑛)*, J. London Mth. Soc.**21**(1946), 91–93. MR**0019665****[5]**R. P. Bambah,*Ramanujan’s function 𝜏(𝑛)—a congruence property*, Bull. Amer. Math. Soc.**53**(1947), 764–765. MR**21553**, https://doi.org/10.1090/S0002-9904-1947-08869-8**[6]**Torleiv Kløve,*Density problems for 𝑝(𝑛)*, J. London Math. Soc. (2)**2**(1970), 504–508. MR**265309**, https://doi.org/10.1112/jlms/2.Part_3.504**[7]**D. H. Lehmer,*Some functions of Ramanujan*, Math. Student**27**(1959), 105–116. MR**131412****[8]**D. W. MacLean,*Residue classes of the partition function*, Math. Comp.**34**(1980), no. 149, 313–317. MR**551308**, https://doi.org/10.1090/S0025-5718-1980-0551308-6**[9]**Morris Newman,*An identity for the coefficients of certain modular forms*, J. London Math. Soc.**30**(1955), 488–493. MR**70658**, https://doi.org/10.1112/jlms/s1-30.4.488**[10]**Morris Newman,*Some theorems about 𝑝ᵣ(𝑛)*, Canadian J. Math.**9**(1957), 68–70. MR**83520**, https://doi.org/10.4153/CJM-1957-009-6**[11]**Morris Newman,*A table of the coefficients of the powers of 𝜂(𝜏)*, Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math.**18**(1956), 204–216. MR**0076802****[12]**S. Ramanujan,*Collected Papers*, Chelsea, New York, 1927, pp. 210-213, 232-238.**[13]**G. N. Watson, "Ramanujan's Vermutung über Zerfallungsanzahlen,"*J. Reine Angew. Math.*, v. 179, 1938, pp. 97-128.

Retrieve articles in *Mathematics of Computation*
with MSC:
10A45

Retrieve articles in all journals with MSC: 10A45

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1982-0645678-X

Article copyright:
© Copyright 1982
American Mathematical Society