Primes of the form $n!\pm 1$ and $2\cdot 3\cdot 5\cdots p\pm 1$

Authors:
J. P. Buhler, R. E. Crandall and M. A. Penk

Journal:
Math. Comp. **38** (1982), 639-643

MSC:
Primary 10A25; Secondary 10A10

DOI:
https://doi.org/10.1090/S0025-5718-1982-0645679-1

Corrigendum:
Math. Comp. **40** (1983), 727.

Corrigendum:
Math. Comp. **40** (1983), 727.

MathSciNet review:
645679

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: All primes less than ${10^{1000}}$ of the form $n! \pm 1$ or $2 \cdot 3 \cdot 5 \cdots p \pm 1$ are determined. Results of Brillhart, Lehmer, and Selfridge are used together with a fast algorithm that applies to primality tests of integers *N* for which many factors of $N \pm 1$ are known.

- Leonard M. Adleman, Carl Pomerance, and Robert S. Rumely,
*On distinguishing prime numbers from composite numbers*, Ann. of Math. (2)**117**(1983), no. 1, 173β206. MR**683806**, DOI https://doi.org/10.2307/2006975 - Alan Borning,
*Some results for $k\,!\pm 1$ and $2\cdot 3\cdot 5\cdots p\pm 1$*, Math. Comp.**26**(1972), 567β570. MR**308018**, DOI https://doi.org/10.1090/S0025-5718-1972-0308018-5 - John Brillhart, D. H. Lehmer, and J. L. Selfridge,
*New primality criteria and factorizations of $2^{m}\pm 1$*, Math. Comp.**29**(1975), 620β647. MR**384673**, DOI https://doi.org/10.1090/S0025-5718-1975-0384673-1 - Gary L. Miller,
*Riemannβs hypothesis and tests for primality*, J. Comput. System Sci.**13**(1976), no. 3, 300β317. MR**480295**, DOI https://doi.org/10.1016/S0022-0000%2876%2980043-8 - Mark Templer,
*On the primality of $k!+1$ and $2\ast 3$ $\ast 5\ast \cdots \ast \,p+1$*, Math. Comp.**34**(1980), no. 149, 303β304. MR**551306**, DOI https://doi.org/10.1090/S0025-5718-1980-0551306-2

Retrieve articles in *Mathematics of Computation*
with MSC:
10A25,
10A10

Retrieve articles in all journals with MSC: 10A25, 10A10

Additional Information

Article copyright:
© Copyright 1982
American Mathematical Society