Vortex methods. I. Convergence in three dimensions
Authors:
J. Thomas Beale and Andrew Majda
Journal:
Math. Comp. 39 (1982), 1-27
MSC:
Primary 65M15; Secondary 76C05
DOI:
https://doi.org/10.1090/S0025-5718-1982-0658212-5
MathSciNet review:
658212
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Recently several different approaches have been developed for the simulation of three-dimensional incompressible fluid flows using vortex methods. Some versions use detailed tracking of vortex filament structures and often local curvatures of these filaments, while other methods require only crude information, such as the vortex blobs of the two-dimensional case. Can such "crude" algorithms accurately account for vortex stretching and converge? We answer this question affirmatively by constructing a new class of "crude" three-dimensional vortex methods and then proving that these methods are stable and convergent, and can even have arbitrarily high order accuracy without being more expensive than other "crude" versions of the vortex algorithm.
- [1] J. Thomas Beale and Andrew Majda, Vortex methods. I. Convergence in three dimensions, Math. Comp. 39 (1982), no. 159, 1–27. MR 658212, https://doi.org/10.1090/S0025-5718-1982-0658212-5
- [2] J. T. Beale & A. Majda, The Design and Analysis of Vortex Methods, Proc. Conf. on Transonic, Shock, and Multi-Dimensional Flows, Madison, Wise., May 1981. (To appear.)
- [3] Alexandre Joel Chorin, Numerical study of slightly viscous flow, J. Fluid Mech. 57 (1973), no. 4, 785–796. MR 395483, https://doi.org/10.1017/S0022112073002016
- [4] Alexandre Joel Chorin, Vortex models and boundary layer instability, SIAM J. Sci. Statist. Comput. 1 (1980), no. 1, 1–21. MR 572539, https://doi.org/10.1137/0901001
- [5] Alexandre Joel Chorin, Estimates of intermittency, spectra, and blow-up in developed turbulence, Comm. Pure Appl. Math. 34 (1981), no. 6, 853–866. MR 634288, https://doi.org/10.1002/cpa.3160340606
- [6] A. J. Chorin & P. Bernard, "Discretization of vortex sheet with an example of roll-up," J. Comput. Phys., v. 13, 1973, pp. 423-428.
- [7] A. J. Chorin and J. E. Marsden, A mathematical introduction to fluid mechanics, Springer-Verlag, New York-Heidelberg, 1979. MR 551053
- [8] V. Del Prete, Numerical Simulation of Vortex Breakdown, L.B.L. Math, and Comp. Report, 1978.
- [9] Gerald B. Folland, Introduction to partial differential equations, 2nd ed., Princeton University Press, Princeton, NJ, 1995. MR 1357411
- [10] Ole Hald and Vincenza Mauceri del Prete, Convergence of vortex methods for Euler’s equations, Math. Comp. 32 (1978), no. 143, 791–809. MR 492039, https://doi.org/10.1090/S0025-5718-1978-0492039-1
- [11] Ole H. Hald, Convergence of Fourier methods for Navier-Stokes equations, J. Comput. Phys. 40 (1981), no. 2, 305–317. MR 617100, https://doi.org/10.1016/0021-9991(81)90212-6
- [12] Jack K. Hale, Ordinary differential equations, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1969. Pure and Applied Mathematics, Vol. XXI. MR 0419901
- [13] Tosio Kato, Nonstationary flows of viscous and ideal fluids in 𝑅³, J. Functional Analysis 9 (1972), 296–305. MR 0481652, https://doi.org/10.1016/0022-1236(72)90003-1
- [14] Heinz-Otto Kreiss and Joseph Oliger, Comparison of accurate methods for the integration of hyperbolic equations, Tellus 24 (1972), 199–215 (English, with Russian summary). MR 319382, https://doi.org/10.3402/tellusa.v24i3.10634
- [15] Heinz-Otto Kreiss and Joseph Oliger, Stability of the Fourier method, SIAM J. Numer. Anal. 16 (1979), no. 3, 421–433. MR 530479, https://doi.org/10.1137/0716035
- [16] A. Leonard, Vortex methods for flow simulation, J. Comput. Phys. 37 (1980), no. 3, 289–335. MR 588256, https://doi.org/10.1016/0021-9991(80)90040-6
- [17] A. Leonard, Numerical Simulation of Interacting Three-Dimensional Vortex Filaments, Proc. 4th Internat. Conf. Numer. Methods Fluid Dynamics, Springer-Verlag, New York, 1975, pp. 245-249.
- [18] A. Leonard, Simulation of Three-Dimensional Separated Flows with Vortex Filaments, Proc. 5th Internat. Conf. Numer. Methods Fluid Dynamics, Springer-Verlag, New York, 1977, pp. 280-284.
- [19] Andrew Majda, James McDonough, and Stanley Osher, The Fourier method for nonsmooth initial data, Math. Comp. 32 (1978), no. 144, 1041–1081. MR 501995, https://doi.org/10.1090/S0025-5718-1978-0501995-4
- [20] L. Rosenhead, "The point vortex approximation of a vortex sheet," Proc. Roy. Soc. London Ser. A, v. 134, 1932, pp. 170-192.
- [21] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. MR 0304972
- [22] R. Temam, Local existence of 𝐶^{∞} solutions of the Euler equations of incompressible perfect fluids, Turbulence and Navier-Stokes equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975) Springer, Berlin, 1976, pp. 184–194. Lecture Notes in Math., Vol. 565. MR 0467033
- [23] Roger Temam, Navier-Stokes equations. Theory and numerical analysis, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Studies in Mathematics and its Applications, Vol. 2. MR 0609732
- [24] K. Kuwahara & H. Takami, "Numerical studies of two-dimensional vortex motion by a system of point vortices," J. Phys. Soc. Japan, v. 34, 1973, pp. 247-253.
- [25] L. M. Milne-Thomson, Theoretical hydrodynamics, 4th ed, The Macmillan Co., New York, 1960. MR 0112435
- [26] K. Oswatitsch, Physikalische Grundlagen der Strömungslehre, Handbuch der Physik (herausgegeben von S. Flügge), Bd. 8/1, Strömungsmechanik I (Mitherausgeber C. Truesdell), Springer-Verlag, Berlin-Göttingen-Heidelberg, 1959, pp. 1–124 (German). MR 0108115
Retrieve articles in Mathematics of Computation with MSC: 65M15, 76C05
Retrieve articles in all journals with MSC: 65M15, 76C05
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1982-0658212-5
Keywords:
Vortex method, incompressible flow
Article copyright:
© Copyright 1982
American Mathematical Society