Strong primality tests that are not sufficient
Authors:
William Adams and Daniel Shanks
Journal:
Math. Comp. 39 (1982), 255-300
MSC:
Primary 10A25; Secondary 10-04, 12-04
DOI:
https://doi.org/10.1090/S0025-5718-1982-0658231-9
MathSciNet review:
658231
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A detailed investigation is given of the possible use of cubic recurrences in primality tests. No attempt is made in this abstract to cover all of the many topics examined in the paper. Define a doubly infinite set of sequences by













- [1] R. Perrin, "Item 1484," L'Intermédiare des Math., v. 6, 1899, pp. 76-77.
- [2] E. Malo, ibid., v. 7, 1900, p. 281, p. 312.
- [2a] E. B. Escott, ibid., v. 8, 1901, pp. 63-64.
- [3] Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966.
- [4] Daniel Shanks, Calculation and applications of Epstein zeta functions, Math. Comp. 29 (1975), 271–287. MR 409357, https://doi.org/10.1090/S0025-5718-1975-0409357-2
- [5] Daniel Shanks, Five number-theoretic algorithms, Proceedings of the Second Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1972) Utilitas Math., Winnipeg, Man., 1973, pp. 51–70. Congressus Numerantium, No. VII. MR 0371855
- [6] Donald Ervin Knuth, Seminumerical Algorithms, Second printing, Addison-Wesley, Reading, Mass., 1971, esp. pp. 260-266.
- [7] Carl Pomerance, J. L. Selfridge, and Samuel S. Wagstaff Jr., The pseudoprimes to 25⋅10⁹, Math. Comp. 35 (1980), no. 151, 1003–1026. MR 572872, https://doi.org/10.1090/S0025-5718-1980-0572872-7
- [8] Daniel Shanks, "Review of Fröberg," ibid., v. 29, 1975, pp. 331-333.
- [9] Daniel Shanks, A survey of quadratic, cubic and quartic algebraic number fields (from a computational point of view), Proceedings of the Seventh Southeastern Conference on Combinatorics, Graph Theory, and Computing (Louisiana State Univ., Baton Rouge, La., 1976), Utilitas Math., Winnipeg, Man., 1976, pp. 15–40. Congressus Numerantium, No. XVII. MR 0453691
- [10] Daniel Shanks, Class number, a theory of factorization, and genera, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969) Amer. Math. Soc., Providence, R.I., 1971, pp. 415–440. MR 0316385
- [11] Daniel Shanks, Solved and unsolved problems in number theory, 2nd ed., Chelsea Publishing Co., New York, 1978. MR 516658
- [12] William G. Spohn Jr., Letter to the editor: “Incredible identities” (Fibonacci Quart. 12 (1974), 271, 280) by Daniel Shanks, Fibonacci Quart. 14 (1976), no. 1, 12. MR 384744
Retrieve articles in Mathematics of Computation with MSC: 10A25, 10-04, 12-04
Retrieve articles in all journals with MSC: 10A25, 10-04, 12-04
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1982-0658231-9
Article copyright:
© Copyright 1982
American Mathematical Society