Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2024 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Some remarks on the convergence of approximate solutions of nonlinear evolution equations in Hilbert spaces
HTML articles powered by AMS MathViewer

by Laurent Véron PDF
Math. Comp. 39 (1982), 325-337 Request permission

Abstract:

Let $\partial \Phi$ be the subdifferential of some lower semicontinuous convex function $\Phi$ of a real Hilbert space H, $f \in {L^2}(0,T;H)$ and ${u_n}$ a continouous piecewise linear approximate solution of $du/dt + \partial \Phi (u) \ni f$, obtained by an implicit scheme. If ${u_0} \in \operatorname {Dom} (\Phi )$, then $d{u_n}/dt$ converges to $du/dt$ in ${L^2}(0,T;H)$. Moreover, if ${u_0} \in \overline {\operatorname {Dom} (\partial \Phi )}$, we construct a step function ${\eta _n}(t)$ approximating t such that ${\lim _{n \to + \infty }}\smallint _0^T{\eta _n}|d{u_n}/dt - du/dt{|^2}\;dt = 0$. When $\Phi$ is inf-compact and when the sequence of approximation of f is weakly convergent to f, then ${u_n}$ converges to u in $C([0,T];H)$ and ${\eta _n}d{u_n}/dt$ is weakly convergent to $tdu/dt$.
References
  • Hédy Attouch, Convergence de fonctionnelles convexes, Journées d’Analyse Non Linéaire (Proc. Conf., Besançon, 1977) Lecture Notes in Math., vol. 665, Springer, Berlin, 1978, pp. 1–40 (French). MR 519420
  • Pierre Baras, Compacité de l’opérateur $f\mapsto u$ solution d’une équation non linéaire $(du/dt)+Au\ni f$, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 23, A1113–A1116 (French, with English summary). MR 493554
  • Ph. Benilan, Equations d’Evolution dans un Espace de Banach Quelconque et Applications, Thèse, Université de Paris XI, Orsay, Paris, 1972.
  • H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, No. 5, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973 (French). MR 0348562
  • Haïm Brézis, Asymptotic behavior of some evolution systems, Nonlinear evolution equations (Proc. Sympos., Univ. Wisconsin, Madison, Wis., 1977) Publ. Math. Res. Center Univ. Wisconsin, vol. 40, Academic Press, New York-London, 1978, pp. 141–154. MR 513816
  • H. Brezis, Propriétés régularisantes de certains semi-groupes non linéaires, Israel J. Math. 9 (1971), 513–534 (French). MR 283635, DOI 10.1007/BF02771467
  • Michael G. Crandall and L. C. Evans, On the relation of the operator $\partial /\partial s+\partial /\partial \tau$ to evolution governed by accretive operators, Israel J. Math. 21 (1975), no. 4, 261–278. MR 390853, DOI 10.1007/BF02757989
  • M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265–298. MR 287357, DOI 10.2307/2373376
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC: 47H15, 34A45
  • Retrieve articles in all journals with MSC: 47H15, 34A45
Additional Information
  • © Copyright 1982 American Mathematical Society
  • Journal: Math. Comp. 39 (1982), 325-337
  • MSC: Primary 47H15; Secondary 34A45
  • DOI: https://doi.org/10.1090/S0025-5718-1982-0669633-9
  • MathSciNet review: 669633