Error estimates for the multidimensional two-phase Stefan problem
HTML articles powered by AMS MathViewer
- by Joseph W. Jerome and Michael E. Rose PDF
- Math. Comp. 39 (1982), 377-414 Request permission
Abstract:
In this paper we derive rates of convergence for regularizations of the multidimensional two-phase Stefan problem and use the regularized problems to define backward-difference in time and ${C^0}$ piecewise-linear in space Galerkin approximations. We find an ${L^2}$ rate of convergence of order $\sqrt \varepsilon$ in the $\varepsilon$-regularization and an ${L^2}$ rate of convergence of order $({h^2}/\varepsilon + \Delta t/\sqrt \varepsilon )$ in the Galerkin estimates which leads to the natural choices $\varepsilon \sim {h^{4/3}}$, $\Delta t \sim {h^{4/3}}$, and a resulting $O({h^{2/3}})\;{L^2}$ rate of convergence of the numerical scheme to the solution of the differential equation. An essentially $O(h)$ rate is demonstrated when $\varepsilon = 0$ and $\Delta t \sim {h^2}$ in our Galerkin scheme under a boundedness hypothesis on the Galerkin approximations. The latter result is consistent with computational experience.References
- S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623–727. MR 125307, DOI 10.1002/cpa.3160120405 O. B. Andersland & D. M. Anderson (eds.), Geotechnical Engineering for Cold Regions, McGraw-Hill, New York, 1978. D. M. Anderson & N. R. Morgenstern, "Physics, chemistry and mechanics of frozen ground," in Proc. North American Permafrost Second International Conf., Nat. Acad. Sciences, Washington, D. C., 1973, pp. 257-295.
- J. H. Bramble, A. H. Schatz, V. Thomée, and L. B. Wahlbin, Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations, SIAM J. Numer. Anal. 14 (1977), no. 2, 218–241. MR 448926, DOI 10.1137/0714015
- H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, No. 5, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973 (French). MR 0348562
- Haïm Brézis and Walter A. Strauss, Semi-linear second-order elliptic equations in $L^{1}$, J. Math. Soc. Japan 25 (1973), 565–590. MR 336050, DOI 10.2969/jmsj/02540565
- B. M. Budak, E. N. Solov′eva, and A. B. Uspenskiĭ, A difference method with smoothing of coefficients for the solution of the Stefan problem, Ž. Vyčisl. Mat i Mat. Fiz. 5 (1965), no. 5, 828–840 (Russian). MR 199969
- L. A. Caffarelli and L. C. Evans, Continuity of the temperature in the two-phase Stefan problem, Arch. Rational Mech. Anal. 81 (1983), no. 3, 199–220. MR 683353, DOI 10.1007/BF00250800
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 0520174
- J. F. Ciavaldini, Analyse numerique d’un problème de Stefan à deux phases par une methode d’éléments finis, SIAM J. Numer. Anal. 12 (1975), 464–487 (French, with English summary). MR 391741, DOI 10.1137/0712037
- Alain Damlamian, Some results on the multi-phase Stefan problem, Comm. Partial Differential Equations 2 (1977), no. 10, 1017–1044. MR 487015, DOI 10.1080/03605307708820053 E. Di Benedetto, Continuity of Weak Solutions to Certain Singular Parabolic Equations, MRC Tech. Report 2124, Madison, Wisc., 1980.
- Jim Douglas Jr., Todd Dupont, and Lars Wahlbin, Optimal $L_{\infty }$ error estimates for Galerkin approximations to solutions of two-point boundary value problems, Math. Comp. 29 (1975), 475–483. MR 371077, DOI 10.1090/S0025-5718-1975-0371077-0 N. Dunford & J. Schwartz, Linear Operators, Vol. I, Wiley, New York, 1957. 15. A. Friedman, "The Stefan problem in several space variables," Trans. Amer. Math. Soc., v. 133, 1968, pp. 51-87.
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- Joseph W. Jerome, Nonlinear equations of evolution and a generalized Stefan problem, J. Differential Equations 26 (1977), no. 2, 240–261. MR 481543, DOI 10.1016/0022-0396(77)90193-0
- Joseph W. Jerome, Existence and approximation of weak solutions of nonlinear Dirichlet problems with discontinuous coefficients, SIAM J. Math. Anal. 9 (1978), no. 4, 730–742. MR 498348, DOI 10.1137/0509052
- Claes Johnson and Vidar Thomée, Error estimates for some mixed finite element methods for parabolic type problems, RAIRO Anal. Numér. 15 (1981), no. 1, 41–78 (English, with French summary). MR 610597 S. Kamenomostskaja, "On the Stefan problem," Mat. Sb., v. 53, 1961, pp. 489-514. (Russian)
- Tosio Kato, Linear evolution equations of “hyperbolic” type. II, J. Math. Soc. Japan 25 (1973), 648–666. MR 326483, DOI 10.2969/jmsj/02540648 S. N. Kruzhkov, "First order quasilinear equations in several independent variables," Math. USSR Sb., v. 10, 1970, pp. 217-243. O. Ladyzhenskaya, V. Solonnikov & N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, vol. 23, Amer. Math. Soc., Providence, R. I., 1968. A. Lazaridis, "A numerical solution of the multidimensional solidification (or melting) problem," Internat. J. Heat Mass Transfer, v. 13, 1970, pp. 1459-1477.
- J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969 (French). MR 0259693
- Gunter H. Meyer, Multidimensional Stefan problems, SIAM J. Numer. Anal. 10 (1973), 522–538. MR 331807, DOI 10.1137/0710047
- J. A. Nitsche, $L_{\infty }$-convergence of finite element approximation, Journées “Éléments Finis” (Rennes, 1975) Univ. Rennes, Rennes, 1975, pp. 18. MR 568857
- Rolf Rannacher, Zur $L^{\infty }$-Konvergenz linearer finiter Elemente beim Dirichlet-Problem, Math. Z. 149 (1976), no. 1, 69–77 (German). MR 488859, DOI 10.1007/BF01301633
- Michael E. Rose, Numerical methods for flows through porous media. I, Math. Comp. 40 (1983), no. 162, 435–467. MR 689465, DOI 10.1090/S0025-5718-1983-0689465-6
- Milton E. Rose, A method for calculating solutions of parabolic equations with a free boundary, Math. Comput. 14 (1960), 249–256. MR 0115283, DOI 10.1090/S0025-5718-1960-0115283-8
- L. I. Rubenšteĭn, The Stefan problem, Translations of Mathematical Monographs, Vol. 27, American Mathematical Society, Providence, R.I., 1971. Translated from the Russian by A. D. Solomon. MR 0351348
- A. A. Samarskiĭ and B. D. Moiseenko, An efficient scheme for the through computation in a many dimensional Stefan problem, Ž. Vyčisl. Mat i Mat. Fiz. 5 (1965), 816–827 (Russian). MR 203960
- A. H. Schatz and L. B. Wahlbin, On the quasi-optimality in $L_{\infty }$ of the $\dot H^{1}$-projection into finite element spaces, Math. Comp. 38 (1982), no. 157, 1–22. MR 637283, DOI 10.1090/S0025-5718-1982-0637283-6
- Ridgway Scott, Optimal $L^{\infty }$ estimates for the finite element method on irregular meshes, Math. Comp. 30 (1976), no. 136, 681–697. MR 436617, DOI 10.1090/S0025-5718-1976-0436617-2
- S. L. Sobolev, Applications of functional analysis in mathematical physics, Translations of Mathematical Monographs, Vol. 7, American Mathematical Society, Providence, R.I., 1963. Translated from the Russian by F. E. Browder. MR 0165337
- Alan Solomon, Some remarks on the Stefan problem, Math. Comp. 20 (1966), 347–360. MR 202391, DOI 10.1090/S0025-5718-1966-0202391-1
- Gilbert Strang, Approximation in the finite element method, Numer. Math. 19 (1972), 81–98. MR 305547, DOI 10.1007/BF01395933
- Gilbert Strang and George J. Fix, An analysis of the finite element method, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973. MR 0443377 J. A. Wheeler, Jr., Simulation of Heat Transfer from a Warm Pipeline Buried in Permafrost, Proc. 74th National Meeting AIChE, March 1973. J. A. Wheeler, Jr., "Permafrost thermal design for the trans-Alaska pipeline," in Moving Boundary Problems (Wilson, Solomon, Boggs, eds.), Academic Press, New York, 1978, pp. 267-284. J. A. Wheeler, Jr., Personal communication.
Additional Information
- © Copyright 1982 American Mathematical Society
- Journal: Math. Comp. 39 (1982), 377-414
- MSC: Primary 65M60; Secondary 65M05, 65M10
- DOI: https://doi.org/10.1090/S0025-5718-1982-0669635-2
- MathSciNet review: 669635