Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Approximation of the spectrum of an operator given by the magnetohydrodynamic stability of a plasma
HTML articles powered by AMS MathViewer

by Yves Jaccard and Hugo Evéquoz PDF
Math. Comp. 39 (1982), 443-452 Request permission


The study of the magnetohydrodynamic (MHD) stability of a plasma in a toroidal configuration leads to a problem of computing the spectrum of a noncompact selfadjoint operator T. The spectrum of T will be approximated by the eigenvalues of ${T_h}$, a Galerkin approximation of T. We present a two-dimensional model problem with two components containing most difficulties arising in the physical problem. We give subspaces and prove sufficient conditions for obtaining convergence using partial regularity of T.
    D. Berger, Numerical Computations of the Ideal Magnetohydrodynamic Stability of Small Aspect Ratio Tokamaks, Thesis No 131, EPF-Lausanne, 1977.
  • Jean Descloux, Nabil Nassif, and Jacques Rappaz, On spectral approximation. I. The problem of convergence, RAIRO Anal. Numér. 12 (1978), no. 2, 97–112, iii (English, with French summary). MR 483400, DOI 10.1051/m2an/1978120200971
  • H. Evéquoz, Approximation Spectrale d’un Opérateur Lié à l’Étude de la Stabilité Magnétohydrodynamique d’un Plasma par une Méthode d’ Éléments Finis Non Conforme, Thesis No 375, EPF-Lausanne, 1980.
  • Gaetano Fichera, Linear elliptic differential systems and eigenvalue problems, Lecture Notes in Mathematics, vol. 8, Springer-Verlag, Berlin-New York, 1965. MR 0209639
  • R. Gruber, Numerical Computations of the Magnetohydrodynamic Spectrum for One and Two Dimensional Equilibria Using Regular Finite Elements and Finite Hybrid Elements, Thesis No 246, EPF-Lausanne, 1976. Y. Jaccard, Approximation Spectrale par la Méthode des Éléments Finis Conformes d’une Classe d’Opérateurs Non Compacts et Partiellement Réguliers, Thesis No 374, EPF-Lausanne, 1980. N. Krall & A. Trivelpiece, Principles of Plasma Physics, McGraw-Hill, New York, 1973. J. Rappaz, Approximation par la Méthode des Éléments Finis du Spectre d’un Opérateur Non Compact Donné par la Stabilité Magnétohydrodynamique d’un Plasma, Thesis No 239, EPF-Lausanne, 1976.
Similar Articles
Additional Information
  • © Copyright 1982 American Mathematical Society
  • Journal: Math. Comp. 39 (1982), 443-452
  • MSC: Primary 65N30; Secondary 76-08, 76E25
  • DOI:
  • MathSciNet review: 669638